1887

Abstract

The gene, encoding signal peptidase I (SPase I) was provided with transcription/translation signals and expressed in this organism. When present on a low-copy-number plasmid, the amount of SPase I produced (per mg cell protein) in was half that produced in wild-type cells. The production of SPase I in was increased approximately fivefold by cloning the gene into a high-copy-number plasmid. The expression of SPase I in did not appear to increase the rate of processing of two hybrid secretory precursor proteins. Two observations may explain the failure of SPase I to stimulate processing of exported proteins in . First, the SPase I was apparently not exposed on the outside of the cytoplasmic membrane, indicating its incorrect insertion into the membrane. Second, processing studies, using cell-free extracts of producing SPase I, suggested that the enzyme was not active. A further outcome of this study was that conditions favouring processing of precursors by SPase I in cell-free extracts of did not favour processing by the corresponding enzyme in cell-free extracts. This suggests that significant differences exist between the two enzymes. The observation that antibodies directed against SPase I did not cross-react with membrane proteins supports this idea.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-9-2073
1991-09-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/9/mic-137-9-2073.html?itemId=/content/journal/micro/10.1099/00221287-137-9-2073&mimeType=html&fmt=ahah

References

  1. Aoki T., Noguchi N., Sasatu M., Kono M. 1987; Complete nucleotide sequence of pTZ12, a chloramphenicol-resistance plas-mid of Bacillus subtilis . Gene 51:107–111
    [Google Scholar]
  2. Bankaitis V. A., Altman E., Emr S. D. 1987; Export and localization of Escherichia coli envelope proteins. Bacterial Outer Membranes as Model Systems75–116 Inouye M. New York: Wiley & Sons;
    [Google Scholar]
  3. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  4. Bron S. 1990; Plasmids. Molecular Biological Methods for Bacillus75–139 Harwood C. R., Cutting S. M. New York: Wiley & Sons;
    [Google Scholar]
  5. Bron S., Venema G. 1972; Ultraviolet inactivation and excision repair in Bacillus subtilis I. Construction and characterization of a transformable eightfold auxotrophic strain and two ultraviolet-sensitive derivatives. Mutation Research 15:1–10
    [Google Scholar]
  6. Dalbey R. E., Wickner W. 1985; Leader peptidase catalyzes the release of exported proteins from the outer surface of the Escherichia coli plasma membrane. Journal of Biological Chemistry 260:15925–15931
    [Google Scholar]
  7. Dalbey R. E., Kuhn A., Wickner W. 1987; The internal signal sequence of Escherichia coli leader peptidase is necessary, but not sufficient, for its rapid membrane assembly. Journal of Biological Chemistry 262:13241–13245
    [Google Scholar]
  8. Date T., Wickner W. 1981; Isolation of the Escherichia coli leader peptidase gene and effects of leader peptidase overproduction in vivo. Proceedings of the National Academy of Sciences of the United States of America 786106–6110
    [Google Scholar]
  9. van Dijl J. M., Smith H., Bron S., Venema G. 1988; Synthesis and processing of Escherichia coli TEM-βlactamase and Bacillus licheniformis αamylase in Escherichia coli the role of signal peptidase I. Molecular and General Genetics 214:55–61
    [Google Scholar]
  10. van Dijl J. M., van den Bergh R., Reversma T., Smith H., Bron S., Venema G. 1990; Molecular cloning of the Salmonella typhimurium lep gene in Escherichia coli . Molecular and General Genetics 223:233–240
    [Google Scholar]
  11. van Dijl J. M., de Jong A., Smith H., Bron S., Venema G. 1991a; Signal peptidase I overproduction results in increased efficiencies of export and maturation of hybrid secretory proteins in Escherichia coli . Molecular and General Genetics 227:40–48
    [Google Scholar]
  12. van Dijl J. M., Bron S., Venema G., de Jong A., Smith H. 1991b; Protein export in Bacillua subtilis and Escherichia coli . In Proceedings of the 6th International Symposium on Genetics of Industrial MicroorganismsStrasbourg, France679–690 Heslot H., Davies J., Florent J., Bobichen L., Durand G., Penasse L. Société Franchise de Microbiologie
    [Google Scholar]
  13. Edens L., Heslinga L., Klok R., Ledeboer A. M., Maat J., Toonen M. Y., Visser C., Verrips C. T. 1982; Cloning of the cDNA encoding the sweet-tasting plant protein thaumatin and its expression in Escherichia coli . Gene 18:1–12
    [Google Scholar]
  14. Haima P., Bron S., Venema G. 1987; The effect of restriction on shotgun cloning and stability in Bacillus subtilis Marburg. Molecular and General Genetics 209:335–342
    [Google Scholar]
  15. Haima P., van Sinderen D., Schotting H., Bron S., Venema G. 1990a; Development of a βgalactosidase αcomplementation system for molecular cloning in Bacillus subtilis . Gene 86:63–69
    [Google Scholar]
  16. Haima P., van Sinderen D., Bron S., Venema G. 1990b; Development of an improved βgalactosidase αcomplementation system for molecular cloning in Bacilllus subtilis . Gene 93:41–47
    [Google Scholar]
  17. Innis M. A., Tokunaga M., Williams M. E., Loranger J. M., Chang S.-Y., Chang S., Wu H. C. 1984; Nucleotide sequence of the Escherichia coli prolipoprotein signal peptidase (Isp) gene. Proceedings of the National Academy of Sciences of the United States of America 813708–3712
    [Google Scholar]
  18. Kallio P., Simonen M., Pal va I., Sarvas M. 1986; Synthesis of OmpA protein of Escherichia coli K12 in Bacillus subtilis . Journal of General Microbiology 132:677–687
    [Google Scholar]
  19. Kawamura F., Doi R. 1984; Construction of a Bacillus subtilis double mutant deficient in extracellular alkaline and neutral proteases. Journal of Bacteriology 160:442–444
    [Google Scholar]
  20. Kusukawa N., Yura T., Ueguchi C., Akiyama Y., Ito K. 1989; Effects of mutations in heat-shock genes groES and groEL on protein export in Escherichia coli . EMBO Journal 8:3517–3521
    [Google Scholar]
  21. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 111:680–685
    [Google Scholar]
  22. Laminet A. A., Plückthun A. 1989; The precursor of βlactamase: purification, properties and folding kinetics. EMBO Journal 8:1469–1477
    [Google Scholar]
  23. Lecker S. L., Lill R., Ziegelhoffer T., Georgopoulos C., Bassford P. J. Jr, Kumamoto C. A., Wickner W. 1989; Three pure chaperone proteins of Escherichia coli – SecB, trigger factor and GroEL – form soluble complexes with precursor proteins in vitro . EMBO Journal 8:2703–2709
    [Google Scholar]
  24. Lecker S. L., Driessen A. J. M., Wickner W. 1990; ProOmpA contains secondary structure and tertiary structure prior to translocation and is shielded from aggregation by association with SecB protein. EMBO Journal 9:2309–2314
    [Google Scholar]
  25. Liu G., Topping T. B., Cover W. H., Randall L. L. 1988; Retardation of folding as a possible means of suppression of a mutation in the leader sequence of an exported protein. Journal of Biological Chemistry 263:14790–14793
    [Google Scholar]
  26. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Mitraki A., King J. 1989; Protein folding intermediates and inclusion body formation. Biotechnology 7:690–697
    [Google Scholar]
  28. Moore K. E., Miura S. 1987; A small hydrophobic domain anchors leader peptidase to the cytoplasmic membrane of Escherichia coli . Journal of Biological Chemistry 262:8806–8813
    [Google Scholar]
  29. Park S., Liu G., Topping T. B., Cover W. H., Randall L. L. 1988; Modulation of folding pathways of exported proteins by the leader sequence. Science 239:1033–1035
    [Google Scholar]
  30. Pollit S., Inouye Μ. 1987; Structure and functions of the signal peptide. Bacterial Outer Membranes as Model Systems117–139 Inouye M. New York: Wiley & Sons;
    [Google Scholar]
  31. Randall L. L., Hardy S. J. S. 1989; Unity in function in the absence of consensus in sequence : role of leader peptides in export. Science 243:1156–1159
    [Google Scholar]
  32. Ray P., Dev I., MacGregor C., Bassford P. Jr 1986; Signal peptidases. Current Topics in Microbiology and Immunology 125:75–102
    [Google Scholar]
  33. Saier Μ. H., Werner P. K., Muller M. 1989; Insertion of proteins into bacterial membranes: mechanism, characteristics, comparisons with the eucaryotic process. Microbiological Reviews 53:333–366
    [Google Scholar]
  34. Skinner M. K., Griswold M. D. 1983; Fluorographic detection of radioactivity in polyacrylamide gels with 2,5-diphenyloxazole in acetic acid and its comparison with existing procedures. Biochemical Journal 209:281–284
    [Google Scholar]
  35. Smith H., Bron S., van Ee J., Venema G. 1987; Construction and use of signal sequence selection vectors in Escherichia coli and Bacillus subtilis . Journal of Bacteriology 169:3321–3328
    [Google Scholar]
  36. Smith H., de Jong A., Bron S., Venema G. 1988; Characterization of signal-sequence coding regions selected from the Bacillus subtilis chromosome. Gene 70:351–361
    [Google Scholar]
  37. Smith H., de Jong A., van Dijl J. M., Bron S., Venema G. 1989; Protein secretion in Bacillus subtilis characterization of randomly selected signal-sequence-coding regions. Genetic Transformation and Expression519–527 Butler L. O., Harwood C., Moseley B. E. B. Andover, UK: Intercept Ltd;
    [Google Scholar]
  38. Suominen I., Karp M., Lautamo J., Knowles J., Mantsala P. 1987; Thermostable alpha amylase of Bacillus stearothermophilus cloning, expression, and secretion by Escherichia coli . Extracellular Enzymes of Microorganisms129–137 Chaloupka J., Krumphanz V. New York: Plenum;
    [Google Scholar]
  39. Tokunaga Μ., Loranger J. M., Wolfe P. B., Wu H. C. 1982; Prolipoprotein signal peptidase in Escherichia coli is distinct from the M13 procoat protein signal peptidase. Journal of Biological Chemistry 257:9922–9925
    [Google Scholar]
  40. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets : procedures and some applications. Proceedings of the National Academy of Sciences of the United States of America 764350–4354
    [Google Scholar]
  41. Vasantha N., Freese E. 1980; Enzyme changes during Bacillus subtilis sporulation caused by deprivation of guanine nucleotides. Journal of Bacteriology 144:1119–1125
    [Google Scholar]
  42. Vieira J., Messing J. 1982; The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268
    [Google Scholar]
  43. de Vrije T., Tommassew J., de Kruijff B. 1987; Optimal posttranslational translocation of the precursor of PhoE protein across Escherichia coli membrane vesicles requires both ATP and the proton motive force. Biochimica et Biophysica Acta 900:63–72
    [Google Scholar]
  44. Watson M. E. E. 1984; Compilation of published signal sequences. Nucleic Acids Research 12:5145–5164
    [Google Scholar]
  45. Williams D. M., Duvall E. J., Lovett P. S. 1981; Cloning restriction fragments that promote expression of a gene in Bacillus subtilis . Journal of Bacteriology 146:1162–1165
    [Google Scholar]
  46. Wolfe P. B., Silver P., Wickner W. 1982; The isolation of homogeneous leader peptidase from a strain of Escherichia coli which overproduces the enzyme. Journal of Biological Chemistry 257:7898–7902
    [Google Scholar]
  47. Wolfe P. B., Wickner W., Goodman J. M. 1983a; Sequence of the leader peptidase gene of Escherichia coli and the orientation of leader peptidase in the bacterial envelope. Journal of Biological Chemistry 258:12073–12080
    [Google Scholar]
  48. Wolfe P. B., Zwizinsky C., Wickner W. 1983b; Purification and characterization of leader peptidase from Escherichia coli . Methods in Enzymology 97:40–46
    [Google Scholar]
  49. Wolfe P. B., Rice M., Wickner W. 1985; Effects of two sec genes on protein assembly into the plasma membrane of Escherichia coli . Journal of Biological Chemistry 260:1836–1841
    [Google Scholar]
  50. Yamada H., Yamagata H., Mizushima S. 1984; The major outer membrane lipoprotein and new lipoproteins share a common signal peptidase that exists in the cytoplasmic membrane of Escherichia coli . FEBS Letters 166:179–182
    [Google Scholar]
  51. Yamagata H., Ippolito C., Inukai M., Inouye M. 1982; Temperature-sensitive processing of outer membrane lipoprotein in an Escherichia coli mutant. Journal of Bacteriology 152:1163–1168
    [Google Scholar]
  52. Yu F., Yamada H., Daishima K., Mizushima S. 1984; Nucleotide sequence of the IspA gene, the structural gene for lipoprotein signal peptidase of Escherichia coli . FEBS Letters 173:264–268
    [Google Scholar]
  53. Zhu H., Dalbey R. E. 1989; Both a short hydrophobic domain and a carboxyl-terminal hydrophilic region are important for signal function in the Escherichia coli leader peptidase. Journal of Biological Chemistry 264:11833–11838
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-9-2073
Loading
/content/journal/micro/10.1099/00221287-137-9-2073
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error