1887

Abstract

strain CTM degrades 2-methylaniline mainly via the -cleavage pathway. Conversion of the metabolite 3-methylcatechol was catalysed by an 156 000 catechol 2,3-dioxygenase (C23OI) comprising four identical subunits of 39000. The corresponding gene was detected by using an oligonucleotide as a gene probe. This oligonucleotide was synthesized on the basis of a partial amino acid sequence obtained from the purified enzyme from . The structural gene of C23OI was located on a 3.5 kb /II restriction fragment of plasmid pTCl. On the same restriction fragment the gene for a second catechol 2,3-dioxygenase, designated C23OII. was found. This gene coded for the synthesis of the 40000 polypeptide of the 158000 tetrameric C23OII. More precise mapping of the structural genes showed that the C23OI gene was located on a 1.2 kb /II I fragment and the C23OII gene on the adjacent 1.15 kb I fragment. Comprehensive substrate range analysis showed that C23OII accepted all the substrates that C23OI did, but additionally cleaved 2,3-dihydroxybiphenyl and catechols derived from phenylcarboxylic acids. C23OI exhibited highest activity towards methylcatechols, whereas C23OII cleaved unsubstituted catechol preferentially.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-8-2041
1991-08-01
2022-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/8/mic-137-8-2041.html?itemId=/content/journal/micro/10.1099/00221287-137-8-2041&mimeType=html&fmt=ahah

References

  1. Anderson D. G., McKay L. 1983; Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Applied and Environmental Microbiology 46:549–552
    [Google Scholar]
  2. Bayly R. C., Wigmore G. J., McKenzie D. J. 1977; Regulation of the enzymes of the meta-cleavage pathway of Pseudomonas putida: the regulon is composed of two operons. Journal of General Microbiology 100:71–79
    [Google Scholar]
  3. Britton H. T. S., Robinson R. A. 1931; Universal buffer solutions and the dissociation constant of Veronal. Journal of the Chemical Society1456
    [Google Scholar]
  4. Catelani D., Colombi A. 1974; Metabolism of biphenyl. Biochemical Journal 143:431–434
    [Google Scholar]
  5. Chatfield L. K., Williams P. A. 1986; Naturally occurring TOL plasmids in Pseudomonas strains carry either two homologous or two nonhomologous catechol 2,3-oxygenase genes. Journal of Bacteriology 168:878–885
    [Google Scholar]
  6. Clewell D. B., Helinski D. R. 1969; Supercoiled circular DNA- protein complex in E. coli: purification and induced conversion to an open circular DNA form. Proceedings of the National Academy of Sciences of the United States of America 62:1159–1166
    [Google Scholar]
  7. Crawford R. L. 1975; Novel pathway for the degradation of protocatechuic acid in Bacillus species. Journal of Bacteriology 121:531–536
    [Google Scholar]
  8. Crawford R. L., Bromley J. W., Perkins-Olson P. E. 1979; Catabolism of protocatechuate by Bacillus macerans . Applied and Environmental Microbiology 37:614–618
    [Google Scholar]
  9. Fuchs K., Schreiner A., Lingens F. 1990; Degradation of 2- methylaniline and chlorinated isomers of 2-methylaniline by Rhodococcus rhodochrous strain CTM. Journal of General Microbiology 137:2033–2039
    [Google Scholar]
  10. Furukawa K., Simon J. R., Chakrabarty A. M. 1983; Common induction and regulation of biphenyl, xylene/toluene and salicylate catabolism in Pseudomonas paucimobilis . Journal of Bacteriology 154:1356–1362
    [Google Scholar]
  11. Furukawa K., Arimura N. 1987; Purification and properties of 2,3-dihydroxybiphenyl dioxygenase from polychlorinated biphenyl degrading Pseudomonas pseudoalcaligenes and Pseudomonas aeruginosa carrying the cloned bphC gene. Journal of Bacteriology 169:924–927
    [Google Scholar]
  12. Holmes D. S., Quigley M. 1981; A rapid boiling method for the preparation of bacterial plasmids. Analytical Biochemistry 114:193–197
    [Google Scholar]
  13. Hopwood D. A., Bibb M. J., Chater K. F., Kieser T., Bruton C. J., Kieser H. M., Lydiate D. J., Smith C. P., Ward J. M., Schrempf H. 1985 Genetic manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes;
    [Google Scholar]
  14. Keil H., Lebens M. R., Williams P. A. 1985; TOL plasmid pWW15 contains two non-homologous independently regulated catechol 2,3-oxygenase genes. Journal of Bacteriology 163:248–255
    [Google Scholar]
  15. Kieser T. 1984; Factors affecting the isolation of ccc DNA from Streptomyces lividans and Escherichia coli . Plasmid 12:19–36
    [Google Scholar]
  16. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 111:680–685
    [Google Scholar]
  17. Latorre J., Reinecke W., Knackmuss H.-J. 1984; Microbial metabolism of chloroanilines: enhanced evolution by natural genetic exchange. Archives of Microbiology 140:159–165
    [Google Scholar]
  18. Mandel M., Higa A. 1970; Calcium dependent bacteriophage DNA infection. Journal of Molecular Biology 53:159–162
    [Google Scholar]
  19. Maniatis T., Fritsch E. F., Sambrooke J. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. McClure N. C., Venables W. A. 1986; Adaption of Pseudomonas putida mt-2 to growth on aromatic amines. Journal of General Microbiology 132:2209–2218
    [Google Scholar]
  21. McClure N. C., Venables W. A. 1987; pTDNl, a catabolic plasmid involved in aromatic amine catabolism in Pseudomonas putida mt-2. Journal of General Microbiology 133:2073–2077
    [Google Scholar]
  22. Murray K., Duggleby C. J., Sala-Trepat J. M., Williams P. A. 1972; The metabolism of benzoate and methylbenzoates via the meta-cleavage pathway by Pseudomonas arvilla mt-2. European Journal of Biochemistry 28:301–310
    [Google Scholar]
  23. Nozaki M. 1979; Oxygenases and dioxygenases. Topics in Current Chemistry Berlin: Springer Verlag;
    [Google Scholar]
  24. Rast H. G., Engelhardt G., Wallnofer P. R. 1980; 2,3- cleavage of substituted catechols in Nocardia sp. DSM 43251 (Rhodococcus rubrus) . Zentralblatt fur Bakteriologie und Hygiene (Abteilung I, Originate C)224–236
    [Google Scholar]
  25. Saint C. P., McClure N. C., Venables W. A. 1990; Physical map of the aromatic amine and m-toluate catabolic plasmid pTDN 1 in Pseudomonas putida: location of a unique meta-cleavage pathway. Journal of General Microbiology 136:615–625
    [Google Scholar]
  26. Schmitt S., Muller R., Wegst W., Lingens F. 1984; Chloridazon-catechol dioxygenases, a distinct group of metacleaving enzymes. Hoppe-Seyler’s Zeitschrift fur Physiologische Chemie 365:143–150
    [Google Scholar]
  27. Selivonov S. A., Starovoitov I. I., Skryabin G. K. 1988; Purification and properties of two enzymes of meta-cleavage of the aromatic ring, controlled by the plasmid of biphenyl biodegradation, pBS241, from the bacteria Pseudomonas putida . Biochemistry 53:905–911 (English translation of Biokhimiya)
    [Google Scholar]
  28. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  29. Trautz D., Renz M. 1983; An optimal freeze-squeeze method for the recovery of DNA fragments from agarose gel. Analytical Biochemistry 132:14–19
    [Google Scholar]
  30. Vieira J., Messing J. 1982; The pUC plasmids, an M13 mp7- derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268
    [Google Scholar]
  31. Vogt Singer M. E., Finnerty W. R. 1988; Construction of an Escherichia coli-Rhodococcus shuttle vector and plasmid transforma-tion in Rhodococcus spp. Journal of Bacteriology 170:638–645
    [Google Scholar]
  32. Wallis M. G., Chapman K. 1990; Isolation and partial characterization of an extradiol non-haem iron dioxygenase which preferentially cleaves 3-methylcatechol. Biochemical Journal 266:605–609
    [Google Scholar]
  33. Worsey M. J., Franklin F. Ch., Williams P. A. 1978; Regulation of the degradative pathway enzymes coded for by the TOL plasmid (pWWO) from Pseudomonas putida mt-2. Journal of Bacteriology 134:757–764
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-8-2041
Loading
/content/journal/micro/10.1099/00221287-137-8-2041
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error