Bacterial metabolism of 3-chloroacrylic acid Free

Abstract

Two bacterial strains were isolated with 3-chloroacrylic acid (CAA) as sole source of carbon and energy. Strain CAA1, a sp., was capable of growth with only the -isomer of CAA. Strain CAA2, a coryneform bacterium, utilized both isomers of CAA as sole source of carbon and energy. Strain CAA1 contained -CAA hydratase and strain CAA2 contained two hydratases, one with -CAA hydratase activity and one with -CAA hydratase activity. The product of the hydratase activities with CAA was malonate semialdehyde. In both strains malonate semialdehyde was subsequently decarboxylated by a cofactor-independent decarboxylase yielding acetaldehyde and CO.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-8-2025
1991-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/8/mic-137-8-2025.html?itemId=/content/journal/micro/10.1099/00221287-137-8-2025&mimeType=html&fmt=ahah

References

  1. Alberty R. A., Massey V., Frieden C., Fuhlbrigge A. R. 1954; Studies of the enzyme fumarase. III. The dependence of kinetic constants at 25° upon the concentration and pH of phosphate buffers. Journal of the American Chemical Society 76:2485–2493
    [Google Scholar]
  2. Bagley D. M., Gossett J. M. 1990; Tetrachloroethene transformation to trichloroethene and cis-l,2-dichloroethene by sulfate-reducing enrichment cultures. Applied and Environmental Microbiology 56:2511–2516
    [Google Scholar]
  3. Becker B., Lechevalier M. P., Gordon R. E., Lechevalier H. A. 1964; Rapid differentiation between Nocardia and Strepto-myces by paper chromatography of whole-cell hydrolysates. Applied Microbiology 12:421–423
    [Google Scholar]
  4. Belser N. O., Castro C. E. 1971; Biodehalogenation - the metabolism of the nematocides cis- and trans-3-chloroallyl alcohol by a bacterium isolated from soil. Journal of Agricultural and Food Chemistry 19:23–26
    [Google Scholar]
  5. Bergmann J. G., Sanik J. 1957; Determination of trace amounts of chlorine in naphtha. Analytical Chemistry 29:241–243
    [Google Scholar]
  6. van Dijk H. 1980; Dissipation rates in soil of 1,2-dichloropropane and 1,3- and 2,3-dichloropropenes. Pesticide Science 11:625–632
    [Google Scholar]
  7. Fathepure B. Z., Boyd S. A. 1988; Dependence of tetrachloro-ethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. strain DCM. Applied and Environmental Microbiology 54:2976–2980
    [Google Scholar]
  8. Freedman D. L., Gossett J. M. 1989; Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Applied and Environmental Microbiology 55:2144–2151
    [Google Scholar]
  9. Hartmans S., De Bont J. A. M., Tramper J., Luyben K., Ch A. M. 1985; Bacterial degradation of vinyl chloride. Biotechnology Letters 7:383–388
    [Google Scholar]
  10. Hartmans S., De Bont J. A. M. 1986; Acetol monooxygenase from Mycobacterium Pyl cleaves acetol into acetate and formaldehyde. FEMS Microbiology Letters 36:155–158
    [Google Scholar]
  11. Hartmans S., Jansen M. W., De Bont J. A. M. 1988; 3-Chloroacrylic acid metabolism in bacteria. Microbial Physiology and the Manufacturing Industry205 Ratledge C., Szentirmai A., Barabàs G., Kevei F. Budapest: OMIKK;
    [Google Scholar]
  12. Hartmans S., De Bont J. A. M., Harder W. 1989; Microbial metabolism of short-chain unsaturated hydrocarbons. FEMS Microbiology Reviews 63:235–264
    [Google Scholar]
  13. Janssen D. B., Scheper A., Dijkhuizen L., Without B. 1985; Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10. Applied and Environmental Microbiology 49:673–677
    [Google Scholar]
  14. Jones D., Keddie R. M. 1986; Genus Brevibacterium . Bergey's Manual of Systematic Bacteriology 21301–1313 Sneath P. H.A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  15. Kanner D., Bartha R. 1982; Metabolism of acetylene by Nocardia rhodochrous . Journal of Bacteriology 150:989–992
    [Google Scholar]
  16. Keuning S., Janssen D. B., Without B. 1985; Purification and characterization of hydrolytic dehalogenase from Xanthobacter autotrophicus GJ10. Journal of Bacteriology 163:635–639
    [Google Scholar]
  17. Kohler-Staub D., Leisinger Th. 1985; Dichloromethane dehalogenase of Hyphomicrobium sp. strain DM2. Journal of Bacteriology 162:676–681
    [Google Scholar]
  18. Marletta M. A., Cheung Y. F., Walsh C. 1982; Stereochemical studies on the hydration of monofluorofumarate and 2,3-difluoro-fumarate by fumarase. Biochemistry 21:2637–2644
    [Google Scholar]
  19. Motosugi K., Esaki N., Soda K. 1982; Purification and properties of a new enzyme, DL-2-haloacid dehalogenase, from Pseudomonas sp. Journal of Bacteriology 150:522–527
    [Google Scholar]
  20. Nakamura K., Bernheim F. 1961; Studies on malonic semi-aldehyde dehydrogenase from Pseudomonas aeruginosa . Biochimica et Biophysica Ada 50:147–152
    [Google Scholar]
  21. Scholtz R., Leisinger Th., Suter F., Cook A. M. 1987; Characterization of 1-chlorohexane halidohydrolase, a dehalogenase of wide substrate range from an Arthrobacter sp. Journal of Bacteriology 169:5016–5021
    [Google Scholar]
  22. Smith J. M., Harrison K., Colby J. 1990; Purification and characterization of D-2-haloacid dehalogenase from Pseudomonas putida strain AJ1/23. Journal of General Microbiology 136:881–886
    [Google Scholar]
  23. Takagi J. S., Tokushige M., Shimura Y., Kanehisa M. 1986; L-Aspartate ammonia-lyase and fumarate hydratase share extensive sequence homology. Biochemical and Biophysical Research Communications 138:568–572
    [Google Scholar]
  24. Teipel J. W., Hass G. M., Hill R. L. 1968; The substrate specificity of fumarase. Journal of Biological Chemistry 2A3:5684–5694
    [Google Scholar]
  25. van den Tweel W. J. J., De Bont J. A. M. 1985; Metabolism of 3-butyn-l-ol by Pseudomonas BB1. Journal of General Microbiology 131:3155–3162
    [Google Scholar]
  26. Wackett L. P., Brusseau G. A., Householder S. R., Hanson R. S. 1989; Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria. Applied and Environmental Microbiology 55:2960–2964
    [Google Scholar]
  27. Yamada E. W., Jakoby W. B. 1960; Aldehyde oxidation. V. Direct conversion of malonic semialdehyde to acetyl-coenzyme A. Journal of Biological Chemistry 235:589–594
    [Google Scholar]
  28. Yokota T., Fuse H., Omori T., Minoda Y. 1986; Microbial dehalogenation of haloalkanes mediated by oxygenase or halidohydrolase. Agricultural and Biological Chemistry 50:453–460
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-8-2025
Loading
/content/journal/micro/10.1099/00221287-137-8-2025
Loading

Data & Media loading...

Most cited Most Cited RSS feed