1887

Abstract

A frequency matrix of positive results for phena defined in a previous phenetic classification was constructed. A total of 329 physiological characters from 782 strains was taken as the basis for this identification matrix. The minimum number of diagnostic characters for the matrix was selected using computer programs for calculation of different separation indices (CHARSEP) and selection of group diagnostic properties (DIACHAR). The resulting matrix consisted of 52 phena versus 50 characters. Overlap of phena was found to be relatively small (OVERMAT program). Identification scores for the most typical hypothetical organism of each phenon was satisfactory (MOSTTYP program). The matrix was evaluated theoretically and practically (MATIDEN program). For members of major clusters and subclusters, e.g. and , identification scores were high. Organisms of phena containing only small numbers of strains could be identified correctly, but with lower accuracy. The identification rate of the matrix (Willcox probability > 0.90) in the theoretical evaluation was 84.39%, and in the practical evaluation 78.12%.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-8-1893
1991-08-01
2022-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/8/mic-137-8-1893.html?itemId=/content/journal/micro/10.1099/00221287-137-8-1893&mimeType=html&fmt=ahah

References

  1. Dawson C. W., Sneath P. H. A. 1985; A probability matrix for identification of vibrios. Journal of Applied Bacteriology 58:407–423
    [Google Scholar]
  2. Goodfellow M. 1986; Actinomycetes systematics: present state and future prospects. Biological, Biochemical and Biomedical Aspects of Actinomycetes, Part B487–496 Szabo G., Biro S., Goodfellow M. Budapest: Academiai Kiado;
    [Google Scholar]
  3. Goodfellow M., Lonsdale C., James A. L., McNamara O. C. 1987; Rapid biochemical tests for the characterisation of strepto- mycetes. FEMS Microbiology Letters 43:39–44
    [Google Scholar]
  4. Gyllenberg H. G., Niemela T. K., Niemi S. J. 1975; A model for automated identification of streptomycetes. Postepy Higieny i Medycyny Doswiadczalnej 29:357–383
    [Google Scholar]
  5. Hill L. R. 1974; Theoretical aspects of numerical identification. International Journal of Systematic Bacteriology 1A:494–499
    [Google Scholar]
  6. Hill L. R., Lapage S. P., Bowie I. S. 1978; Computer assisted identification of coryneform bacteria. Coryneform Bacteria181–215 Bousfield I. J., Callely A. G. London: Academic Press;
    [Google Scholar]
  7. Holmes B., Pinning C. A., Dawson C. A. 1986; A probability matrix for the identification of Gram-negative, aerobic, non-fermentative bacteria that grow on nutrient agar. Journal of General Microbiology 132:1827–1842
    [Google Scholar]
  8. Kämpfer P., Kroppenstedt R. M., Dott W. 1991; A numerical classification of the genera Streptomyces and Streptoverticillium using miniaturized physiological tests. Journal of General Microbiology 137:1831–1891
    [Google Scholar]
  9. Kuster E. 1972; Simple working key for the classification and identification of named taxa included in the International Streptomyces Project. International Journal of Systematic Bacteriology 22:139–148
    [Google Scholar]
  10. Kurylowicz W., Paszkiewicz A., Woznicka W., Kurzatkowski W., Szulga T. 1975; Classification of Streptomyces by different numerical methods. Postepy Higieny i Medycyny Doswiadczalnej 29:281–355
    [Google Scholar]
  11. Kutzner H. J. 1981; Streptomyces. The Prokaryotes: a Handbook of Habitats, Isolation and Identification of Bacteria2028–2090 Starr M. P., Stolp H., Tniper H. G., Balows A., Schlegel H. G. Berlin: Springer Verlag;
    [Google Scholar]
  12. Langham C. D., Williams S. T., Sneath P. H. A., Mortimer A. M. 1989a; New probability matrices for identification of Streptomyces . Journal of General Microbiology 135:121–133
    [Google Scholar]
  13. Langham C. D., Sneath P. H. A., Williams S. T., Mortimer A. M. 1989b; Detecting aberrant strains in bacterial groups as an aid to constructing databases for computer identification. Journal of Applied Bacteriology 66:339–352
    [Google Scholar]
  14. Lapage S. P., Bascomb B., Willcox W. R., Curtis M. A. 1973; Identification of bacteria by computer: general aspects and perspectives. Journal of General Microbiology 77:273–299
    [Google Scholar]
  15. Locci R., Schofield G. M. 1989; Genus Streptoverticillium Baldacci 1958, 15, emend, mut. char. Baldacci, Farina and Locci 1966,168AL . Bergey’s Manual of Systematic Bacteriology2492–2504 Williams S. T., Sharpe M., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  16. Locci R., Rogers J., Sardi G., Schofield G. M. 1981; A preliminary numerical study on named species of the genus Streptoverticillium . Annali di Microbiologia 31:115–121
    [Google Scholar]
  17. Nitsch B., Kutzner H. J. 1969; Decomposition of oxalic acid and other organic acids by streptomycetes as a taxonomic aid. Zeitschrift für Allgemeine Mikrobiologie 9:613–632
    [Google Scholar]
  18. Nonamura H. 1974; Key for classification and identification of 458 species of the streptomycetes included in ISP. Journal of Fermentation Technology 52:78–92
    [Google Scholar]
  19. O’Donnell A. 1988; Recognition of novel actinomycetes. Actinomycetes in Biotechnology69–88 Goodfellow M., Williams S. T., Mordarski M. London: Academic Press;
    [Google Scholar]
  20. Pridham T. G., Tresner H. D. 1974; Streptomyces Waksman and Henrici 1943, 339. Bergey’s Manual of Determinative Bacteriology, 8th.748–829 Buchanan R. E., Gibbons N. E. Baltimore: Williams & Wilkins;
    [Google Scholar]
  21. Priest F. G., Alexander B. 1988; A frequency matrix for probabilistic identification of some bacilli. Journal of General Microbiology 134:3011–3018
    [Google Scholar]
  22. Saddler G. S., O’Donnell A. G., Goodfellow M., Minnikin D. E. 1987; SIMCA pattern recognition in the analysis of streptomycete fatty acids. Journal of General Microbiology 133:1137–1147
    [Google Scholar]
  23. Shirling E. B., Gottlieb D. 1966; Methods for characterization of Streptomyces species. International Journal of Systematic Bacteriology 16:313–340
    [Google Scholar]
  24. Shirling E. B., Gottlieb D. 1968a; Cooperative description of type cultures of Steptomyces. II. Species descriptions from first study. International Journal of Systematic Bacteriology 18:69–118
    [Google Scholar]
  25. Shirling E. B., Gottlieb D. 1968b; Cooperative description of type cultures of Streptomyces. III. Additional species descriptions from first and second studies. International Journal of Systematic Bacteriology 18:279–391
    [Google Scholar]
  26. Shirling E. B., Gottlieb D. 1969; Cooperative description of type cultures of Streptomyces. IV. Species descriptions from the second, third and fourth studies. International Journal of Systematic Bacteriology 19:391–512
    [Google Scholar]
  27. Shirling E. B., Gottlieb D. 1972; Cooperative description of type cultures of Streptomyces. V. Additional descriptions. International Journal of Systematic Bacteriology 22:265–394
    [Google Scholar]
  28. Sneath P. H. A. 1974; Test reproducibility in relation to identification. International Journal of Systematic Bacteriology 24:508–523
    [Google Scholar]
  29. Sneath P. H. A. 1979a; Basic program for identification of an unknown with presence-absence data against an identification matrix of percent positive characters. Computers and Geosciences 5:195–213
    [Google Scholar]
  30. Sneath P. H. A. 1979b; Basic program for character separation indices from an identification matrix of percent positive characters. Computers and Geosciences 5:349–357
    [Google Scholar]
  31. Sneath P. H. A. 1980a; Basic program for the most diagnostic properties of groups from an identification matrix of percent positive characters. Computers and Geosciences 6:21–26
    [Google Scholar]
  32. Sneath P. H. A. 1980b; Basic program for determining the best identification scores possible for the most typical example when compared with an identification matrix of percent positive characters. Computers and Geosciences 6:27–34
    [Google Scholar]
  33. Sneath P. H. A. 1980c; Basic program for determining overlap between groups in an identification matrix of percent positive characters. Computers and Geosciences 6:267–278
    [Google Scholar]
  34. Szabo I. M., Marton M., Buti I., Fernandez C. 1975; A diagnostic key for the identification of ’species’ of Streptomyces and Streptoverticillium included in the International Streptomyces Project. Ada Botanica Academiae Scientiarum Hungaricae 21:387–418
    [Google Scholar]
  35. Willcox W. R., Lapage S. P., Bascomb S., Curtis M. A. 1973; Identification of bacteria by computer: theory and programming. Journal of General Microbiology 77:317–330
    [Google Scholar]
  36. Williams S. T., Wellington E. M. H. 1980; Micromorphology and fine structure of actinomycetes. Microbiological Classification and Identification139–165 Goodfellow M., Board R. G. London: Academic Press;
    [Google Scholar]
  37. Williams S. T., Goodfellow M., Alderson G., Wellington E. M. H., Sneath P. H. A., Sackin M. J. 1983a; Numerical classification of Streptomyces and related genera. Journal of General Microbiology 129:1743–1813
    [Google Scholar]
  38. Williams S. T., Goodfellow M., Wellington E. M. H., Vickers J.C., Alderson G., Sneath P. H. A., Sackin M. J., Mortimer A. M. 1983b; A probability matrix for identification of some streptomycetes. Journal of General Microbiology 129:1815–1830
    [Google Scholar]
  39. Williams S. T., Locci R., Vickers J. C., Schofield G. M., Sneath P. H. A., Mortimer A. M. 1985; Probabilistic identification of Streptoverticillium species. Journal of General Microbiology 131:1881–1889
    [Google Scholar]
  40. Williams S. T., Goodfellow M., Alderson G. 1989; Genus Streptomyces (Waksman & Henrici 1943) 339AL . Bergey’s Manual of Systematic Bacteriology 42452–2492 Williams S. T., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-8-1893
Loading
/content/journal/micro/10.1099/00221287-137-8-1893
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error