Mutants of producing pyrroloquinoline quinone Free

Abstract

In glucose minimal medium a PTS strain of [Δ()] could grow slowly (doubling time, = 10 h). When the population reached 5 × 10 to 2 × 10 cells ml, mutants growing rapidly ( = 1.5h) appeared and rapidly outgrew the initial population. These mutants (EF mutants) do not use a constitutive galactose permease for glucose translocation. They synthesize sufficient pyrroloquinoline quinone (PQQ) to yield a specific activity of glucose dehydrogenase (GDH) equivalent to that found in the parent strain grown in glucose minimal medium supplemented with 1 nM-PQQ. Membrane preparations containing an active GDH oxidized glucose to gluconic acid, which was also present in the culture supernatant of EF strains in glucose minimal medium. Glucose utilization is the only phenotypic trait distinguishing EF mutants from the parent strain. Glucose utilization by EF mutants was strictly aerobic as expected from a PQQ-dependent catabolism. The regulation of PQQ production by is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-8-1775
1991-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/8/mic-137-8-1775.html?itemId=/content/journal/micro/10.1099/00221287-137-8-1775&mimeType=html&fmt=ahah

References

  1. Ameyama M., Shinagawa E., Matsushita K., Adachi O. 1984; Growth stimulating substance for microorganisms produced by Escherichia coli causing the reduction of the lag phase in microbial growth and identity of the substance with pyrroloquinoline quinone. Agricultural and Biological Chemistry 48:3099–3107
    [Google Scholar]
  2. Ameyama M., Nonobe M., Shinagawa E., Matsushita K., Takimoto K., Adachi O. 1986; Purification and characterization of the quinoprotein dglucose dehydrogenase apoenzyme from Escherichia coli . Agricultural and Biological Chemistry 50:49–57
    [Google Scholar]
  3. Aronson B. D., Levinthal M., Somerville R. L. 1989; Activation of a cryptic pathway for threonine metabolism via specific IS3-mediated alteration of promoter structure in Escherichia coli . Journal of Bacteriology 171:5503–5511
    [Google Scholar]
  4. Biville F., Mazodier P., Gasser F., Van Kleef M. A. G., Duine J. A. 1988; Physiological properties of a pyrroloquinoline quinone mutant of Methylobacterium organophilum . FEMS Microbiology Letters 52:53–58
    [Google Scholar]
  5. Biville F., Turlin E., Gasser F. 1989; Cloning and genetic analysis of six pyrroloquinoline quinone biosynthesis genes in Methylobacterium organophilum DSM760. Journal of General Microbiology 135:2917–2929
    [Google Scholar]
  6. Bouvet O. M. M., Grimont P. A. D. 1988; Extracellular oxidation of D-glucose by some members of the Enterobacteriaceae . Annales de I'lnstitut Pasteur/Microbiologie 139:59–77
    [Google Scholar]
  7. Bouvet O. M. M., Lenormand P., Grimont P. A. D. 1989; Taxonomic diversity of the D-glucose oxidation pathway in the Enterobacteriaceae . International Journal of Systematic Bacteriology 39:61–67
    [Google Scholar]
  8. Bruni C. B., Colantuoni V., Sbordone L., Cortese R., Blasi F. 1977; Biochemical and regulatory properties of Escherichia coli K-12 hisT mutants. Journal of Bacteriology 130:4–10
    [Google Scholar]
  9. Cleton-Jansen A. M., Goosen N., Wenzel T. J., Van de Putte P. 1988; Cloning of the gene encoding quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus: evidence for the presence of a second enzyme. Journal of Bacteriology 170:2121–2125
    [Google Scholar]
  10. Dokter P., Frank J., Jzn, Duine J. A. 1986; Purification and characterization of quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus LMD-79.41. Biochemical Journal 239:163–167
    [Google Scholar]
  11. Duine J. A., Jongejan J. 1989; Quinoproteins, enzymes with pyrroloquinoline quinone as cofactor. Annual Review of Biochemistry 58:403–26
    [Google Scholar]
  12. Duine J. A., Jongejan J. 1990; Pyrroloquinoline quinone : a novel cofactor. Vitamins and Hormones 45223–262 Auerbach G. D., McCormick D. B. London: Academic Press;
    [Google Scholar]
  13. Duine J. A., Frank J., Jzn, Verwiel P. E. 1980; Structure and activity of the prosthetic group of methanol dehydrogenase. European Journal of Biochemistry 108:187–192
    [Google Scholar]
  14. Erni B. 1989; Glucose transport in Escherichia coli . FEMS Microbiology Reviews 63:13–24
    [Google Scholar]
  15. Frank J. Jr, Van Krimpen S. H., Van Verwiel P. E. J., Jongejan J. A., Mulder A. C., Duine J. A. 1989; On the mechanism of inhibition of methanol dehydrogenase by cyclopropane-derived inhibitors. European Journal of Biochemistry 184:187–195
    [Google Scholar]
  16. Geiger O., Görisch H. 1986; Crystalline quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus . Biochemistry 25:6043–6048
    [Google Scholar]
  17. Goosen N., Vermaas D. A. M., Van de Putte P. 1987; Cloning of the genes involved in synthesis of coenzyme pyrroloquinoline-quinone from Acinetobacter calcoaceticus . Journal of Bacteriology 169:303–307
    [Google Scholar]
  18. Gottschalk G. 1985; Bacterial Metabolism. The Entner-Doudoroff Pathway, 2.114–117 New York: Springer-Verlag;
    [Google Scholar]
  19. Grimont P. A. D., Jackson T. A., Ageron E., Noonan M. J. 1988; Serratia entomophila sp. nov., associated with Amber disease in the New-Zealand grass grub Costelytra zealandica . International Journal of Systematic Bacteriology 38:1–6
    [Google Scholar]
  20. Groen B., Van Kleef M. A. G., Duine J. A. 1986; Quinohaemoprotein alcohol dehydrogenase apoenzyme from Pseu-domonas testosteroni . Biochemical Journal 234:611–615
    [Google Scholar]
  21. Hommes R. W. J., Postma P. W., Neijssel O. M., Tempest D. W., Dokter P., Duine J. A. 1984; Evidence of a quinoprotein glucose dehydrogenase apoenzyme in several strains of Escherichia coli . FEMS Microbiology Letters 24:329–333
    [Google Scholar]
  22. Hommes R. W. J., Van Hell B., Postma P. W., Neijssel O. M., Tempest D. W. 1985; The functional significance of glucose dehydrogenase in Klebsiella aerogenes . Archives of Microbiology 143:163–168
    [Google Scholar]
  23. Hommes R. W. J., Loenen W. A. M., Neijssel O. M., Postma P. W. 1986; Galactose metabolism in gal mutants of Salmonella typhimurium and Escherichia coli . FEMS Microbiology Letters 36:187–190
    [Google Scholar]
  24. Levy S., Zeng G.-Q., Danchin A. 1990; Cyclic AMP synthesis in Escherichia coli strains bearing known deletions of the pts phospho-transferase operon. Gene 86:27–33
    [Google Scholar]
  25. Linton J. D., Woodward S., Gouldney D. G. 1987; The consequence of stimulating glucose dehydrogenase activity by the addition of PQQ on metabolite production by Agrobacterium radiobacter NCIB11833. Applied Microbiology and Biotechnology 25:357–361
    [Google Scholar]
  26. MacLennan D. G., Ousby J. C., Vasey R. B., Cotton N. T. 1971; The influence of dissolved oxygen in Pseudomonas AMI grown on methanol in continuous culture. Journal of General Microbiology 69:395–404
    [Google Scholar]
  27. Matsushita K., Shinagawa E., Inoue T., Adachi O., Ameyama M. 1986; Immunological evidence of two types of PQQ-dependent dglucose dehydrogenase in bacterial membranes and the location of the enzyme in Escherichia coli . FEMS Microbiology Letters 37:141–144
    [Google Scholar]
  28. Matsushita K., Nonobe M., Shinagawa E., Adachi O., Ameyama M. 1987; Reconstitution of a pyrroloquinoline quinone-dependent dglucose oxidase respiratory chain of Escherichia coli with cytochrome o oxidase. Journal of Bacteriology 169:205–209
    [Google Scholar]
  29. Matsushita K., Shinagawa E., Adachi O., Ameyama M. 1988; Quinoprotein dglucose dehydrogenase in Acinetobacter calcoaceticus LMD 79-41 : the membrane-bound enzyme is distinct from the soluble enzyme. FEMS Microbiology Letters 55:53–58
    [Google Scholar]
  30. Meulenberg J. J. M., Sellink E., Loenen W. A. M., Riegman N. H., Van Kleef M., Postma P. W. 1990; Cloning of Klebsiella pneumoniae pqq genes and PQQ biosynthesis in Escherichia coli . FEMS Microbiology Letters 71:337–344
    [Google Scholar]
  31. Miller J. H. 1972 Experiments in Molecular Genetics433 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Möllering H., Bergmeyer H. U. 1984 Methods of Enzymatic Analysis VI220–227 Bergmeyer H. U. Weinheim: Verlag Chemie;
    [Google Scholar]
  33. Neijssel O. M. 1987; PQQ-linked enzymes in enteric bacteria. Microbiological Sciences 4:87–90
    [Google Scholar]
  34. Neijssel O. M., Tempest D. W., Postma P. W., Duine J. A., Frank J., Jzn. 1983; Glucose metabolism by K+limited Klebsiella aerogenes: evidence for the involvement of a quinoprotein glucose dehydrogenase. FEMS Microbiology Letters 20:35–39
    [Google Scholar]
  35. Postma P. W., Broekhuizen C. P., Geerse R. H. 1989; The role of PEP : carbohydrate phosphotransferase system in the regulation of bacterial metabolism. FEMS Microbiology Reviews 63:69–80
    [Google Scholar]
  36. Roy A., Haziza G., Danchin A. 1983; Regulation of adenylate cyclase synthesis in Escherichia coli: nucleotide sequence of the control region. EMBO Journal 2:791–797
    [Google Scholar]
  37. Saier M. H., Bramburg F. G., Roseman S. 1973; Characterization of constitutive galactose permease mutants in Salmonella typhimurium . Journal of Bacteriology 111:512–514
    [Google Scholar]
  38. Van Kleef M. A. G., Dokter P., Mulder A. C., Duine J. A. 1987; Detection of cofactor pyrroloquinoline quinone. Analytical Biochemistry 162:143–149
    [Google Scholar]
  39. Van Schie B. J., Hellingwerf K. J., Van Dijken J. P., Elferink M. G. L., Van Dijl J. M., Kuenen J. G., Konings W. L. 1985; Energy transduction by electron transfer via a pyrrolo-quinoline quinone dependent glucose dehydrogenase in Escherichia coli, Pseudomonas aeruginosa and Acinetobacter calcoaceticus (var. Iwoffi). Journal of Bacteriology 163:493–499
    [Google Scholar]
  40. Van Schie B. J., de Mooy O. H., Linton J. D., Van Dijken J. P., Kuenen J. G. 1987; PQQ-dependent production of gluconic acid by Acinetobacter, Agrobacterium and Rhizobium species. Journal of General Microbiology 133:867–875
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-8-1775
Loading
/content/journal/micro/10.1099/00221287-137-8-1775
Loading

Data & Media loading...

Most cited Most Cited RSS feed