1887

Abstract

Summary: The use of a membrane inlet triple quadrupole mass spectrometer revealed indole as an end product in the growth medium of cultures of the cattle parasite and the human parasite : formation of indole is enhanced in the presence of added tryptophan. Two different clinical isolates of also produce dimethyl disulphide. Electron impact ionization yielded complex fragmentation mixtures, but the facility for analysis of daughter ions enabled unequivocal assignments. Chemical ionization gave [M + 1] species, and tandem mass spectrometry produced identification through daughter ions. The method provides a rapid single-step procedure for the characterization of microbial products without the need for preliminary separation and derivatization.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-7-1743
1991-07-01
2021-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/7/mic-137-7-1743.html?itemId=/content/journal/micro/10.1099/00221287-137-7-1743&mimeType=html&fmt=ahah

References

  1. Anon. 1983; Eight Peak Index of Mass Spectra. The Mass Spectrometry Data Centre The Royal Society of Chemistry; Nottingham:
    [Google Scholar]
  2. Chapman A., Linstead D. J., Lloyd D., Williams J. 1985; 13C- NMR reveals glycerol as an unexpected major metabolite of the protozoan parasite Trichomonas vaginalis. FEBS Letters 191:287–292
    [Google Scholar]
  3. Diamond L. S. 1957; The establishment of various trichomonads of animals and man in axenic cultures. Journal of Parasitology 43:488–490
    [Google Scholar]
  4. Gobert N., Chaigneau M., Savel J. 1971; Etude des gaz libérés au cours de la culture on anaérobiose de Trichomonas vaginalis. Comptes Rendus des Séances de la Société de Biologie 165:276–282
    [Google Scholar]
  5. Gooder H., Happold F. C. 1954; The tryptophanase-tryptophan reaction. The nature of the enzyme-coenzyme-substrate complex. Biochemical Journal 57:369–374
    [Google Scholar]
  6. Gutteridge W. E., Coombs G. H. 1977 Biochemistry of Parasitic Protozoa98–99 London: Macmillan Press;
    [Google Scholar]
  7. Hopkins F. G., Cole S. W. 1903; The constitution of tryptophan and the action of bacteria upon it. A contribution to the chemistry of proteids Part II. Journal of Physiology 29:451–466
    [Google Scholar]
  8. Ishiguro T. 1985; Gas chromatographic-mass spectrometric analysis of gases produced by Trichomonas vaginalis in vitro. Acta Obstetrica et Gynaecologica Japanica 37:1097–1102
    [Google Scholar]
  9. Lauritsen F. R., Bohatka S., Degn H. 1990; A membrane inlet tandem mass spectrometer for continuous monitoring of volatile organic compounds. Rapid Communications in Mass Spectrometry 4:401–401
    [Google Scholar]
  10. Linstead D., Cranshaw M. 1983; The pathway of arginine catabolism in the parasitic flagellate Trichomonas vaginalis. Molecular and Biochemical Parasitology 8:241–241
    [Google Scholar]
  11. Lloyd D., Yarlett N., Hillman K., Paget T. A., Chapman A., Ellis J. E., Williams A. G. 1989; Oxygen and aerotolerant protozoa: studies using non-invasive techniques. Biochemistry and Molecular Biology of ‘Anaerobic’ Protozoa1–21 Lloyd D., Coombs G. H., Paget T. A. Chur, Switzerland: Harwood Academic;
    [Google Scholar]
  12. Lockwood B. C., Coombs G. H. 1989; The catabolism of amino acids by Trichomonas vaginalis. Biochemistry and Molecular Biology of ‘Anaerobic’ Protozoa93–111 Lloyd D., Coombs G. H., Paget T. A. Chur, Switzerland: Harwood Academic;
    [Google Scholar]
  13. Lockwood B. C., North M. J., Scott K. I., Bremner A. F., Coombs G. H. 1987; The use of a highly sensitive electrophoretic method to compare the proteinases of trichomonads. Molecular and Biochemical Parasitology 24:89–89
    [Google Scholar]
  14. Merricks D. L., Salisbury R. L. 1973; The involvement of vitamin B6 in dethiomethylation by rumen microorganisms in vitro. Journal of Animal Science 37:368–368
    [Google Scholar]
  15. Merricks D. L., Salisbury R. L. 1974; Involvement of vitamin B6 in dethiomethylation by rumen microorganisms. Applied Microbiology 28:106–106
    [Google Scholar]
  16. Onodera R., Migita R. 1985; Metabolism of threonine, methionine and related compounds in mixed rumen ciliate protozoa. Journal of Protozoology 32:326–326
    [Google Scholar]
  17. Stibbs H. H., Steed J. R. 1975; Further studies on the metabolism of tryptophan in Trypanosoma brucei gambiense : Cofactors, inhibitors and end-products. Experientia 31:274–274
    [Google Scholar]
  18. Tanaka H., Esaki N., Soda K. 1977; Properties of l-methionine-γ-lyase from Pseudomonas ovalis. Biochemistry 16:100–100
    [Google Scholar]
  19. Thong K. W., Coombs G. H. 1987a; Trichomonas species: homocysteine desulphurase and serine sulphydrase activities. Exper-imental Parasitology 63:143–143
    [Google Scholar]
  20. Thong K. W., Coombs G. H. 1987b; The effects of inhibitors of sulphur containing amino acid metabolism on the growth of Trichomonas vaginalis in vitro. Journal of Antimicrobial Chemotherapy 19:429–429
    [Google Scholar]
  21. Thong K. W., Coombs G. H., Sanderson B. E. 1987; l-Methionine catabolism in trichomonads. Molecular and Biochemical Parasitology 23:223–223
    [Google Scholar]
  22. Wood W. A., Gunsalus I. C., Umbreit W. W. 1947; Function of pyridoxal phosphate : resolution and purification of the tryptophan- ase enzyme of Escherichia coli. Journal of Biological Chemistry 170:313–313
    [Google Scholar]
  23. Yost R. A., Enke C. G. 1979; Triple quadrupole mass spectrometry for direct mixture analysis and structure elucidation. Analytical Chemistry 51:1251A–1264A
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-7-1743
Loading
/content/journal/micro/10.1099/00221287-137-7-1743
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error