Role of Na in pH homeostasis by the alkalophilic bacterium Free

Abstract

Summary: , a facultative alkalophile, can maintain a dpH of up to 1·7 pH units, acid inside, and can rapidly adjust the cytoplasmic pH (pH) in response to a shift in external pH (pH), demonstrating effective pH homeostasis. The presence of Na accelerated the attainment of a new steady-state pH during a shift in the alkaline direction but slowed the attainment of new steady state following a shift in pH in the acid direction. Measurements of internal Na following the addition of 6 mm-NaCl to cells incubated under conditions whereby the cells either could (+ 0·68 mm-NaCl) or could not (0·08 mm-NaCl) regulate pH indicated that pH exerted some feedback control over Na influx. A model for the involvement of Na in pH regulation comprising an electrogenic Na/H antiporter and a sodium influx channel regulated by pH is proposed. Intrinsic to this model is the suggestion that the Na/H antiporter is not the sole site of feedback control by pH.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-7-1709
1991-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/7/mic-137-7-1709.html?itemId=/content/journal/micro/10.1099/00221287-137-7-1709&mimeType=html&fmt=ahah

References

  1. Booth I. R. 1985; Regulation of cytoplasmic pH in bacteria.. Microbiological Reviews 49:359–378
    [Google Scholar]
  2. Collins M. D., Lund B. M., Farrow J. A. E., Schleifer K. H. 1983; Chemotaxonomic study of an alkalophilic bacterium Exiguo- bacterium aurantiacum gen. nov., sp. nov. Journal of General Microbiology 129:2037–2042
    [Google Scholar]
  3. Gee J. M., Lund B. M., Metcalf G., Peel J. L. 1980; Properties of a new group of alkalophilic bacteria.. Journal of General Microbiology 117:9–17
    [Google Scholar]
  4. Karpel R., Olami Y., Täglich D., Schuldiner S., Padan E. 1988; Sequencing of the gene ant which affects the Na+/H+ antiporter activity in Escherichia coli.. Journal of Biological Chemistry 263:10408–10414
    [Google Scholar]
  5. Koyama N., Ishikawa Y., Nosoh Y. 1986; Dependence of the growth of pH sensitive mutants of a facultatively alkalophilic Bacillus on the regulation of cytoplasmic pH.. FEMS Microbiology Letters 34:197–198
    [Google Scholar]
  6. Kroll R. G., Booth I. R. 1981; The role of potassium transport in the generation of a pH gradient in Escherichia coli.. Biochemical Journal 198:691–698
    [Google Scholar]
  7. Krulwich T. A., Guffanti A. A., Bornstein R. F., Hoffstein J. 1982; A sodium requirement for growth, solute transport, and pH homeostasis in Bacillus firmus RAB.. Journal of Biological Chemistry 257:1885–1889
    [Google Scholar]
  8. Krulwich T. A., Federbush J. G., Guffanti A. A. 1984; Presence of a non-metabolizable solute that is translocated with Na+ enhances Na+-dependent pH homeostasis in an alkalophilic Bacillus.. Journal of Biological Chemistry 260:4055–4058
    [Google Scholar]
  9. Krulwich T. A., Guffanti A. A., Fong M. Y., Falk L., Hicks D. B. 1986; Alkalophilic Bacillus firmus RAB generates variants which can grow at lower Na+ concentrations than the parental strain.. Journal of Bacteriology 165:884–889
    [Google Scholar]
  10. Krulwich T. A., Guffanti A. A., Seto-Young D. 1990; pH homeostasis and bioenergetic work in alkalophiles.. FEMS Microbiology Reviews 75:271–278
    [Google Scholar]
  11. Macnab R. M., Castle A. M. 1987; A variable stoichiometry model for pH homeostasis in bacteria.. Biophysical Journal 52:637–647
    [Google Scholar]
  12. McLaggan D. 1984; Control of internal pH by a facultative alkalophile.. PhD thesis University of East Anglia; Norwich, UK:
    [Google Scholar]
  13. McLaggan D., Selwyn M. J., Dawson A. P. 1984a; Dependence of Na+ of control of cytoplasmic pH in a facultative alkalophile.. FEBS Letters 165:254–258
    [Google Scholar]
  14. McLaggan D., Selwyn M. J., Lund B. M., Dawson A. P. 1984b; The effect of Na+ on growth and intracellular pH of a facultative alkalophile.. Biochemical Society Transaction 12:470–471
    [Google Scholar]
  15. Mitchell P. 1966; Chemiosmotic coupling in oxidative and photosynthetic phosphorylation.. Biological Reviews 41:445–502
    [Google Scholar]
  16. Stock J. B., Rauch B., Roseman S. 1977; Periplasmic space in Salmonella typhimurium and Escherichia coli.. Journal of Biological Chemistry 252:7850–7861
    [Google Scholar]
  17. Unemoto T., Tokuda H., Hayashi M. 1990; Primary sodium pumps and their significance in bacterial energetics.. In The Bacteria, vol. XII, Bacterial Energetics33–54 Krulwich. T. A. San Diego: Academic Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-7-1709
Loading
/content/journal/micro/10.1099/00221287-137-7-1709
Loading

Data & Media loading...

Most cited Most Cited RSS feed