1887

Abstract

Summary: Clinical isolates as well as transformants producing the ß-lactamases SHV-2 or SHV-2a demonstrate MIC values for cefotaxime of 4 mg l or 64 to >128 mg l, respectively. The ß-lactamases differ by one possibly insignificant amino acid exchange at position number 10 of the mature protein; their kinetic parameters are rather similar. The 5' untranslated regions of both corresponding genes show no homology starting 74 nucleotides upstream to the start codon. Hybridization of intragenically annealing oligonucleotides to dot-blotted serial dilutions of total cellular RNA from transformants harbouring these genes cloned into the same vector plasmid gave a positive signal down to 1·2 μg (SHV-2) and 0·32 to 0·16 μg (SHV-2a), indicating a four to eight times higher amount of specific transcript in the case of SHV-2a. By primer extension analysis and S1 nuclease digestion the starting point of transcription was located 100 nucleotides (SHV-2) and 50 nucleotides (SHV-2a) in front of the start codon. No other transcripts of different length could be detected after prolonged exposure. Northern blot analysis demonstrated the length of the ß-lactamase mRNA to be about 1·6 kb in both cases, thus comprising a potential open reading frame downstream of the two enzymes’ genes. Selective PCR amplification of both promoter regions and of the structural gene of SHV-2 and subsequent combined cloning of each of the promoters and the SHV-2 gene into pBGS19 using a HI restriction site introduced by three point mutations into the cloned sequences was employed to transform DH5a. The MIC value for cefotaxime of transformants harbouring the SHV-2 promoter and SHV-2 structural gene was 8 mg l, but was 64 mg l in the case of the SHV-2a promoter and SHV-2 structural gene combination, indicating that the quantitative change of resistance to cefotaxime of SHV-2a-producing bacteria is caused solely by a significant promoter mutation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-7-1667
1991-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/7/mic-137-7-1667.html?itemId=/content/journal/micro/10.1099/00221287-137-7-1667&mimeType=html&fmt=ahah

References

  1. Aiba H., Adhya S., De Crombrugghe B. 1981; Evidence of two functional gal promoters in intact Escherichia coli cells.. Journal of Biological Chemistry 256:11905–11910
    [Google Scholar]
  2. Arakawa Y., Ohta M., Kido N., Fujii Y., Komatsu T., Kato N. 1986; Close evolutionary relationship between the chromosomally encoded β-lactamase gene of Klebsiella pneumoniae and the TEM β-lactamase gene mediated by R plasmids.. FEBS Letters 207:69–74
    [Google Scholar]
  3. Beutel B. A., Record M. T. 1990; E. coli promoter spacer regions contain non-random sequences which correlate to spacer length. Nucleic Acids Research 18:3597–3603
    [Google Scholar]
  4. Chen S. T., Clowes R. C. 1984; Two improved promoter sequences for the β-lactamase expression arising from a single base-pair substitution.. Nucleic Acids Research 12:3219–3234
    [Google Scholar]
  5. Chen S. T., Clowes R. C. 1987; Variations between the nucleotide sequences of Tnl, Tn2 and Tn3 and expression of β-lactamase in Pseudomonas aeruginosa and Escherichia coli . Journal of Bacteriology 169:913–916
    [Google Scholar]
  6. Collatz E., Tran Van Nhieu G., Billot-Klein D., Williamson R., Gutmann L. 1989; Substitution of serine for arginine in position 162 of TEm-type β-lactamases extends the substrate profile of mutant enzymes, TEm-7 and TEm-101, to ceftazidime and aztreonam.. Gene 78:349–354
    [Google Scholar]
  7. Davis G. L., Dibner M. D., Battey J. F. 1986 Basic Methods in Molecular Biology. New York: Elsevier;
    [Google Scholar]
  8. Forsman M., Lindgren L., Haggstròm B., Jaurin B. 1989; Transcriptional induction of Streptomyces cacaoi β-lactamase by a β-lactam compound.. Molecular Microbiology 3:1425–1432
    [Google Scholar]
  9. Garbarg-Chenon A., Godard V., Labia R., Nicolas J. C. 1990; Nucleotide sequence of SHV-2 β-lactamase gene.. Antimicrobial Agents and Chemotherapy 34:1444–1446
    [Google Scholar]
  10. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids.. Journal of Molecular Biology 166:557–589
    [Google Scholar]
  11. Hawley D. K., McClure W. R. 1983; Compilation and analysis of Escherichia coli promoter DNA sequences.. Nucleic Acids Research 11:2237–2255
    [Google Scholar]
  12. Horwitz M. S. Z., Loeb L. A. 1990; Structure-function relationship in Escherichia coli promoter DNA.. Progress in Nucleic Acid Research and Molecular Biology 38137–164 Cohn W. E., Moldave. K. San Diego: Academic Press;
    [Google Scholar]
  13. Inoue T., Cech T. R. 1985; Secondary structure of the circular form of the Tetrahymena rRNA intervening sequence : a technique for RNA structure analysis using chemical probes and reverse transcriptase.. Proceedings of the National Academy of Sciences of the United States of America 82:648–652
    [Google Scholar]
  14. Kliebe C, Nies B. A., Meyer J. F., Tolxdorff-Neutzling R. M., Wiedemann B. 1985; Evolution of a plasmid-coded resistance to broad spectrum cephalosporins.. Antimicrobial Agents and Chemotherapy 28:302–307
    [Google Scholar]
  15. Kobayashi M., Nagata K., Ishihama A. 1990; Promoter selectivity of Escherichia coli RNA polymerase: effect on base substitutions in the promoter –35 region on promoter strength.. Nucleic Acids Research 18:7367–7372
    [Google Scholar]
  16. Kuriki Y. 1989; The translation start signal region of TEM β-lactamase mRNA is responsible for heat shock-induced repression of amp gene expression in Escherichia coli . Journal of Bacteriology 171:5452–5457
    [Google Scholar]
  17. Labia R., Morand A., Tiwari K., Sirot J., Sirot D., Petit A. 1988; Interactions of new plasmid-mediated β-lactamases with third-generation cephalosporins.. Reviews of Infectious Diseases 10:885–891
    [Google Scholar]
  18. Lindberg F., Normark S. 1986; Contribution of chromosomal β-lactamases to β-lactam resistance in Enterobacteria.. Reviews of Infectious Diseases 8:292–304
    [Google Scholar]
  19. Lovett P. S. 1990; Translational attenuation as the regulator of inducible cat genes.. Journal of Bacteriology 172:1–6
    [Google Scholar]
  20. Maas R. 1983; An improved colony hybridization method with significantly increased sensitivity for detection of single genes.. Plasmid 10:296–298
    [Google Scholar]
  21. Mabilat C., Courvalin P. 1990; Development of'oligotyping' for characterization and molecular epidemiology of TEM β-lactamases in members of the family Enterobacteriaceae.. Antimicrobial Agents and Chemotherapy 34:2210–2216
    [Google Scholar]
  22. Mabilat C, Goussard S., Sougakoff W., Spencer R. C., Courvalin P. 1990; Direct sequencing of the amplified structural gene and promoter for the extended-broad-spectrum β-lactamase TEm-9 (RHH-1) of Klebsiella pneumoniae . Plasmid 23:27–34
    [Google Scholar]
  23. Podbielski A., Melzer B. 1990; Nucleotide sequence of the gene encoding the SHV-2 β-lactamase (bla SHV.2) of Klebsiella ozaenae . Nucleic Acids Research 18:4916
    [Google Scholar]
  24. Podbielski A., Kuhnemund O., Lutticken R. 1990; Identification of group A type 1 streptococcal M protein gene by nonradio-active oligonucleotide detection method.. Medical Microbiology and Immunology 179:255–262
    [Google Scholar]
  25. Podbielski A., Schönling J., Melzer B., Warnatz K., Leusch H. G. 1991; Molecular characterization of a new plasmid-encoded SHV-type β-lactamase (SHV-2 variant) conferring high-level cefo-taxime resistance upon Klebsiella pneumoniae . Journal of General Microbiology 137:569–578
    [Google Scholar]
  26. Reddy K. J., Webb R., Sherman L. A. 1990; Bacterial RNA isolation with one hour centrifugation in a table-top ultracentrifuge.. Bio Techniques 8:250–251
    [Google Scholar]
  27. Rosenberg M., Court D. 1979; Regulatory sequences involved in the promotion and termination of RNA transcription.. Annual Review of Genetics 13:319–353
    [Google Scholar]
  28. Russell D. R., Bennett G. N. 1981; Characterization of the β-lactamase promoter of pBR322.. Nucleic Acids Research 9:2517–2533
    [Google Scholar]
  29. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd. Cold Spring Harbour, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors.. Proceedings of the National Academy of Sciences of the United States of America 74:5463–5467
    [Google Scholar]
  31. De Smit M. H., van Duin J. 1990; Control of prokaryotic translational initiation by raRNA secondary structure.. Progress in Nucleic Acid Research and Molecular Biology 381–35 Cohn W. E., Moldave. K. San Diego: Academic Press;
    [Google Scholar]
  32. Sougakoff W., Goussard S., Courvalin P. 1988; The TEm-3 β-lactamase, which hydrolyzes broad-spectrum cephalosporins, is derived from the TEm-2 penicillinase by two amino acid substitutions.. FEMS Microbiology Letters 56:343–348
    [Google Scholar]
  33. Spratt B. G., Hedge P. J., , Te Heesen S., Edelmann A., Broome-Smith J. K. 1986; Kanamycin-resistant vectors that are analogues of plasmidspUC8, pUC9, pEMBL8 and pEMBL9.. Gene 4:337–342
    [Google Scholar]
  34. Urabe H., Lenzini M. V., Mukaide M., Dusart J., Nakano M. M., Ghuysen J. M., Ogawara H. 1990; β-Lactamase expression in Streptomyces cacaoi . Journal of Bacteriology 172:6421–6434
    [Google Scholar]
  35. Zhou C. Y., Yang Y., Jong A. Y. 1990; Miniprep in ten minutes.. Bio Techniques 8:172–173
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-7-1667
Loading
/content/journal/micro/10.1099/00221287-137-7-1667
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error