1887

Abstract

Summary: Pulse-chase experiments using [U-C]valine were done with P2 and Q176, high- and low-penicillin-producing strains of . The metabolic flux of this amino acid into protein and penicillin was measured, and compartmentation of penicillin biosynthesis was assessed. Strain P2 took up C-valine more slowly than strain Q176, but their rates of incorporation into protein were comparable. Incorporation of C-valine into penicillin occurred immediately with the high-producer P2, but exhibited a lag with Q176. After C-valine had been removed from the medium, the specific radioactivity of penicillin continued to increase in Q176 but started to decrease immediately in P2. The specific radioactivities of C-valine in protein and in penicillin were significantly different in both strains: Q176 had a higher specific radioactivity of valine in penicillin than P2, whereas P2 had a higher specific radioactivity of valine in protein than Q176. Moreover, the specific radioactivity of C-valine in penicillin was 20-fold higher in strain Q176 than in P2. These results indicate that penicillin and protein biosynthesis use different pools of cellular valine, and that exchange of valine between the two compartments is slow in the low-producer, but rapid in the high-producer strain. Hence these results indicate a further control point of penicillin biosynthesis in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-7-1653
1991-07-01
2021-05-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/7/mic-137-7-1653.html?itemId=/content/journal/micro/10.1099/00221287-137-7-1653&mimeType=html&fmt=ahah

References

  1. Barredo J. L., Diez B., Alvarez E., Martin J. F. 1989; Large amplification of a 35-kb DNA fragment carrying two penicillin biosynthetic genes in high penicillin producing strains of Penicillium chrysogenum . Current Genetics 16:453–459
    [Google Scholar]
  2. Benko P. V., Wood T. C., Segel I. H. 1969; Multiplicity and regulation of amino acid transport in Penicillium chrysogenum . Archives of Biochemistry and Biophysics 129:498–508
    [Google Scholar]
  3. Bidlingmeyer B. A., Cohen S. A., Tarvin T. L. 1984; Rapid analysis of amino acids using pre-column derivatization. Journal of Chromatography 336:93–104
    [Google Scholar]
  4. Davidson J. N. 1972 The Biochemistry of Nucleic Acids New York: Academic Press;
    [Google Scholar]
  5. Elander R. P. 1983; Strain improvement and preservation of β-lactam producing microorganisms. Antibiotics containing the Beta-Lactam Structure I97–146 Demain A. L., Solomon N. A. Berlin: Springer-Verlag;
    [Google Scholar]
  6. Fawcett P., Abraham E. P. 1975; δ-(α-aminoadipyl)cysteinylvaline synthetase. Methods in Enzymology 43:471–473
    [Google Scholar]
  7. Friedrich C. G., Demain A. L. 1978; Uptake and metabolism of α-aminoadipic acid by Penicillium chrysogenum . Archives of Microbiology 19:43–47
    [Google Scholar]
  8. Goulden S. A., Chattaway F. W. 1969; End-product control of acetohydroxyacid synthetase by valine in Penicillium chrysogenum Q176 and a high penicillin-yielding mutant. Journal of General Microbiology 59:111–118
    [Google Scholar]
  9. Hönlinger C., Kubicek C. P. 1989a; Regulation of δ-(l-α-aminoadipyl)-cysteinyl-d-valine and isopenicillin N biosynthesis in Penicillium chrysogenum by the α-aminoadipate pool size. FEMS Microbiology Letters 65:71–76
    [Google Scholar]
  10. Hönlinger C., Kubicek C. P. 1989b; Metabolism and compart-mentation of α-aminoadipic acid in penicillin-producing strains of Penicillium chrysogenum . Biochimica et Biophysica Ada 993:204–211
    [Google Scholar]
  11. Hönlinger C., Hampel W. A., Röhr M., Kubicek C. P. 1988; Differential effects of general amino acid control of lysine biosynthesis on penicillin formation in strains of Penicillium chrysogenum . Journal of Antibiotics 41:255–257
    [Google Scholar]
  12. Jaklitsch W. M., Hampel W. A., Röhr M., Kubicek C. P., Gamerith G. 1986; α-aminoadipate pool concentration and penicillin biosynthesis in strains of Penicillium chrysogenum . Canadian Journal of Microbiology 32:473–480
    [Google Scholar]
  13. Kurylowicz W., Kurzatkowski W., Woznicka W., Polowniak-Pracka H., Paszkiewicz A. 1979; The site of benzyl penicillin accumulation in Penicillium chrysogenum . Zentralblatt fur Bakteriolo-gie Zweite Abteilung 134:721–732
    [Google Scholar]
  14. Kurzatkowski W., Kurylowicz W., Paszkiewicz A. 1982; Penicillin G production by immobilized fungal vesicles. European Journal of Applied Microbiology and Biotechnology 15:211–213
    [Google Scholar]
  15. Lara F., Mateos R. C., Vasquez G., Sanchez S. 1982; Induction of penicillin biosynthesis by L-glutamate in Penicillium chrysogenum . Biochemical and Biophysical Research Communications 105:172–178
    [Google Scholar]
  16. Luengo J. M. 1990; Recent advances in the enzymatic synthesis of penicillins. Progress in Industrial Microbiology 37:315–332
    [Google Scholar]
  17. Luengo J. M., Revilla G., Villanueva J. R., Martin J. F. 1979; Lysine regulation of penicillin biosynthesis in low-producing and industrial strains of Penicillium chrysogenum . Journal of General Microbiology 115:207–211
    [Google Scholar]
  18. Miller J. R., Ingolia T. D. 1989; Cloning and characterization of beta lactam biosynthetic genes. Molecular Microbiology 3:689–695
    [Google Scholar]
  19. Müller W. H., Van Der Krift T. P., Krouwer A. J. J., Wösten H. A. B., Van Der Voort L. H. M., Smaal E. B., Verkleij A. J. 1991; Localization of the pathway of penicillin biosynthesis in Penicillium chrysogenum . The EM BO Journal 10:489–495
    [Google Scholar]
  20. Nover L., Lerbs W., Müller W., Luckner M. 1979; Chanelling of exogenous phenylalanine to the sites of storage and the sites of alkaloid and protein biosynthesis in Penicillium cyclopium . Biochimica et Biophysica Acta 584:270–283
    [Google Scholar]
  21. Revilla G., Ramos F. R., Lopez-Nieto M. J., , Alvarez E., Martin J. F. 1986; Glucose represses formation of δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine and isopenicillin N synthase but not penicillin acyltransferase in Penicillium chrysogenum . Journal of Bacteriology 168:947–952
    [Google Scholar]
  22. Smith D. J., Burnham M. K. R., Edwards J., Earl A. J., Turner G. 1990; Cloning and heterologous expression of the penicillin biosynthetic gene cluster from Penicillium chrysogenum . Bio j Technology 8:39–41
    [Google Scholar]
  23. Somerson N. L., Demain A. L., Nunheimer T. D. 1961; Reversal of lysine inhibition of penicillin production by α-aminoadipic acid. Archives of Biochemistry and Biophysics 93:238–241
    [Google Scholar]
  24. Stevens C. M., De Long C. 1957; Valine metabolism and penicillin biosynthesis. Journal of Biological Chemistry 211:991–999
    [Google Scholar]
  25. Stevens C. M., Vohra P., De Long C. 1954; Utilization of valine in the biosynthesis of penicillins. Journal of Biological Chemistry 230:297–300
    [Google Scholar]
  26. Tardrew P. L., Johnson M. J. 1958; Sulfate utilization by penicillin-producing mutants of Penicillium chrysogenum . Journal of Bacteriology 76:400–405
    [Google Scholar]
  27. Veenstra A. E., Van Solingen P., Huininga-Muurling H., , Koekman B. P., Groenen M. A. M., Smaal E. B., Kattevilder A., Alvarez E., Barredo J. L., Martin J. F. 1989; Cloning of penicillin biosynthetic genes. Genetics and Molecular Biology of Industrial Organisms262–269 Hershberger C. L., Queener S. W., Hegeman G. Washington, DC: American Society for Microbiology;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-7-1653
Loading
/content/journal/micro/10.1099/00221287-137-7-1653
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error