1887

Abstract

Summary: The major outer-membrane protein (MOMP) of is the focus of attention for chlamydial vaccine design, particularly those serovar- and subspecies-specific epitopes which provoke neutralizing immune responses. Selected surface-exposed B-cell epitopes of MOMP, incorporating B-subspecies specificities, were expressed as fusions with LamB, an inducible outer-membrane transport protein of . These recombinant chlamydial-LamB proteins were correctly transported to the outer membrane of both and an mutant of . The immunogenicity of the constructs was investigated in a mouse model of chlamydial salpingitis. After oral immunization, recombinant were recovered from the livers of mice for up to two weeks, and a serum IgG response was induced both to the and to the inserted chlamydial epitopes. By contrast, intravenous inoculation was ineffective. Although these LamB fusions proved only weakly immunogenic, this approach should be useful for investigating the ability of attenuated vaccines incorporating chlamydial epitopes to stimulate protective mucosal immunity in the mouse model of chlamydial salpingitis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-7-1557
1991-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/7/mic-137-7-1557.html?itemId=/content/journal/micro/10.1099/00221287-137-7-1557&mimeType=html&fmt=ahah

References

  1. Allen J. E., Beatty P. R., Stephens R. S. 1990; Recombinant fusion proteins define T-cell antigenic sites on the major outer membrane protein of Chlamydia trachomatis. Chlamydial Infections - Proceedings of the Seventh International Symposium on Human Chlamydial Infections101–104 Bowie W. R., Caldwell H. D., Jones R. P., Mardh P.-A., Ridgway G. L., Schachter J., Stamm W. E., Ward M. E. Cambridge: Cambridge University Press;
    [Google Scholar]
  2. Baehr W., Zhang Y.-X., Joseph T., Su H., Nano F. E., Everett D. E., Caldwell H. D. 1988; Mapping antigenic domains expressed by Chlamydia trachomatis major outer membrane protein (MOMP) genes. Proceedings of the National Academy of Sciences of the United States of America 854000–4004
    [Google Scholar]
  3. Batteiger B. E., Newhall W. J., Terho P., Wilde C. E., Jones R. B. 1986; Antigenic analysis of the major outer membrane protein of Chlamydia trachomatis with murine monoclonal antibodies. Infection and Immunity 53:530–533
    [Google Scholar]
  4. Bavoil P., Ohlin A., Schachter J. 1984; Role of disulfide bonding in outer membrane structure and permeability in Chlamydia trachomatis. Infection and Immunity 44:479–485
    [Google Scholar]
  5. Birnboim H. C., Dolv J. 1979; Rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7:1513–1523
    [Google Scholar]
  6. Bouges-Bocquet B., Villarroya H., Hofnung M. 1984; Linker mutagenesis in the gene of an outer membrane protein of Escherichia coli, LamB. Journal of Cellular Biochemistry 24:217–228
    [Google Scholar]
  7. Boulain J. C, Charbit A., Hofnung M. 1986; Mutagenesis by random linker insertion into the lamB gene of Escherichia coli K12. Molecular and General Genetics 205:339–348
    [Google Scholar]
  8. Brown A., Hormaeche C. E., Demarco de Hormaeche R., Winther M., Dougan G., Maskell D. J., Stocker B. A. D. 1987; An attenuated aroA Salmonella typhimurium vaccine elicits humoral and cellular immunity to cloned β-galactosidase in mice. Journal of Infectious Diseases 155:86–92
    [Google Scholar]
  9. Bullas L. R., Ryo J. I. 1983; Salmonella typhimurium LT2 strains which are r-m+ for all three chromosomally located systems of DNA restriction and modification. Journal of Bacteriology 156:471–474
    [Google Scholar]
  10. Charbit A., Sobczak E., Michel M.-L., Molla A., Tiollais P., Hofnung M. 1987; Presentation of two epitopes of the pre-S2 region of hepatitis B virus on live recombinant bacteria. Journal of Immunology 139:1658–1664
    [Google Scholar]
  11. Charbit A., Ronca J., Michel V., Werts C., Hofnung M. 1991; Permissive sites and topology of an outer membrane protein with a reporter epitope. Journal of Bacteriology 173:262–275
    [Google Scholar]
  12. Clement J. M., Hofnung M. 1981; Gene sequence of the λ receptor, an outer membrane protein of E. coliKH. Cell 27:507–514
    [Google Scholar]
  13. Clements J. D., Lyon F. L., Lowe K. L., Farrand A. L., El-Morshidy S. 1986; Oral immunization of mice with attenuated Salmonella enteritidis containing a recombinant plasmid which codes for production of the B subunit of heat-labile Escherichia coli enterotoxin. Infection and Immunity 53:685–692
    [Google Scholar]
  14. Collett B. A., Newhall W. J., Jersild V. R. A., Jones R. B. 1989; Detection of surface-exposed epitopes on Chlamydia tracho-matis by immune electron electron microscopy. Journal of General Microbiology 135:85–94
    [Google Scholar]
  15. Conlan J. W., Clarke I. N., Ward M. E. 1988; Epitope mapping with solid phase peptides: identification of type-, subspecies-, species- and genus-reactive antibody binding domains on the major outer membrane protein of Chlamydia trachomatis. Molecular Microbiology 2:673–679
    [Google Scholar]
  16. Conlan J. W., Ferris S., Clarke I. N., Ward M. E. 1989; Surface-exposed epitopes on the major outer membrane protein of Chlamydia trachomatis defined with peptide antisera. Journal of General Microbiology 135:3219–3228
    [Google Scholar]
  17. Curtiss R., Kelly S. M., Gulig P. A., Nakayama K. 1989; Selective delivery of antigens by recombinant bacteria. Current Topics in Microbiology and Immunology 146:35–49
    [Google Scholar]
  18. Fairweather N. F., Chatfield S. N., Makoff A. J., Strugnell R. A., Bester J., Maskell D. J., Dougan G. 1990; Oral vaccination of mice against tetanus by use of a live attenuated Salmonella carrier. Infection and Immunity 58:1323–1326
    [Google Scholar]
  19. Grosjean H., Fiers W. 1982; Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene 18:199–209
    [Google Scholar]
  20. Hatch T. P., Allan I., Pearce J. H. 1984; Structural and polypeptide differences between envelopes of infective and reproductive life cycle forms of Chlamydia spp. Journal of Bacteriology 157:13–20
    [Google Scholar]
  21. Hayes L. J., Pickett M. A., Conlan J. W., Ferris S., Everson J. S., Ward M. E., Clarke I. N. 1990; The major outer membrane proteins of Chlamydia trachomatis serovars A and B; intra-serovar amino acid changes do not alter specificities of serovar-and C subspecies-reactive antibody binding domains. Journal of General Microbiology 136:1559–1566
    [Google Scholar]
  22. Hoiseth S. K., Stocker B. A. D. 1981; Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature London: 291:238–239
    [Google Scholar]
  23. Holland M. J., Clarke I. N., Ward M. E., Dockrell N. D., Viswalingham N. D., Goh B. T. S., Allason-Jones E., Mabey D. C. W. 1990; Human T-cell responses to defined antigens of Chlamydia trachomatis. Chlamydial Infections - Proceedings of the Seventh International Symposium on Human Chlamydial Infections177–180 Bowie W. R., Caldwell H. D., Jones R. P., Mardh P.-A., Ridgway G. L., Schachter J., Stamm W. E., Ward M. E. Cambridge: Cambridge University Press;
    [Google Scholar]
  24. Hormaeche C. E. 1979; Natural resistance to Salmonella typhimurium in different inbred mouse strains. Immunology 37:311–318
    [Google Scholar]
  25. Johannsson A., Stanley C. J., Self C. H. 1985; A fast highly sensitive colorimetric enzyme immunoassay system demonstrating benefits of enzyme amplification in clinical chemistry. Clinica Chimica Acta 148:119–124
    [Google Scholar]
  26. Khyse-Andersen J. 1984; Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. Journal of Biochemical and Biophysical Methods 10:203–209
    [Google Scholar]
  27. Kuo C. C., Chi E. Y. 1987; Ultrastructural study of Chlamydia trachomatis surface antigens by immunogold staining with monoclonal antibodies. Infection and Immunity 55:1324–1328
    [Google Scholar]
  28. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature London: 227680–685
    [Google Scholar]
  29. Leclerc C, Charbit A., Molla A., Hofnung M. 1989; Antibody response to a foreign epitope expressed at the surface of recombinant bacteria: importance of the route of immunization. Vaccine 7:242–248
    [Google Scholar]
  30. MacLachlan P. R., Sanderson K. E. 1985; Transformation of Salmonella typhimurium with plasmid DNA: differences between rough and smooth strains. Journal of Bacteriology 161:442–445
    [Google Scholar]
  31. Maskell D. J., Sweeney K. J., O’Callaghan D., Hormaeche C. E., Liew F. Y., Dougan G. 1987; Salmonella typhimurium aroA mutants as carriers of the Escherichia coli heat-labile enterotoxin B subunit to the murine secretory and systemic immune systems. Microbial Pathogenesis 2:211–221
    [Google Scholar]
  32. Morrison R. P., Lying K., Caldwell H. D. 1989; Chlamydial disease pathogenesis: ocular hypersensitivity elicited by a genus-specific 57-kD protein. The Journal of Experimental Medicine 169:663–675
    [Google Scholar]
  33. Ohnishi S. T., Barr J. K. 1978; A simplified method of quantitating proteins using the biuret and phenol reagents. Analytical Biochemistry 86:193–200
    [Google Scholar]
  34. Osborn M. J., Munson R. 1974; Separation of inner (cytoplasmic) and outer membranes of gram-negative bacteria. Methods in Enzymology 31:642–653
    [Google Scholar]
  35. Poirier T., Kehoe M. A., Beachey E. H. 1988; Protective immunity evoked by oral administration of attenuated aroA Salmonella typhimurium expressing cloned streptococcal M protein. Journal of Experimental Medicine 168:25–32
    [Google Scholar]
  36. Schachter J., Dawson C. 1978 Chlamydial Infections Littleton, MA: PSG Publishing;
    [Google Scholar]
  37. Schmieger H. 1972; Phage P22 mutants with increased or decreased transduction abilities. Molecular and General Genetics 119:75–88
    [Google Scholar]
  38. Sigwart D. F., Stocker B. A. D., Clements J. D. 1989; Effects of a pur A mutation of efficacy of Salmonella live vaccine vectors. Infection and Immunity 57:1858–1861
    [Google Scholar]
  39. Stephens R. S., Wagar E. A., Schoolnik G. K. 1988; High resolution mapping of serovar-specific and common antigenic determinants on the major outer membrane protein of Chlamydia trachomatis. Journal of Experimental Medicine 167:817–831
    [Google Scholar]
  40. Tacket C. O., Forrest B., Morona R., Attridge S. R., Labroody J., Tall B. D., Reymann M., Rowley D., Levine M. M. 1990; Safety, immunogenicity, and efficacy against cholera challenge in humans of a typhoid-cholera hybrid vaccine derived from Salmonella typhi Ty21a. Infection and Immunity 58:1620–1627
    [Google Scholar]
  41. Tsai C. M., Frasch C. E. 1982; A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Analytical Biochemistry 119:115–119
    [Google Scholar]
  42. Tuffrey M., Falder P., Gale J., Taylor-Robinson D. 1986; Salpingitis in mice induced by human strains of Chlamydia trachomatis. British Journal of Experimental Pathology 67:605–616
    [Google Scholar]
  43. Wu J. W., Newton S., Judd A., Stocker B., Robinson W. S. 1989; Expression of immunogenic epitopes of hepatitis B surface antigen with hybrid flagellin proteins by a vaccine strain of Salmonella. Proceedings of the National Academy of Sciences of the United States of America 864726–4730
    [Google Scholar]
  44. Yanisch-Perron C, Vieira J., Messing J. 1985; Improved Ml3 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  45. Zhang X.-Y., Stewart S., Joseph T., Taylor H. R., Caldwell H. D. 1987; Protective monoclonal antibodies recognise epitopes located on the major outer membrane protein of Chlamydia trachomatis. Journal of Immunology 138:575–581
    [Google Scholar]
  46. Zhang H., Scholl R., Browse J., Somerville C. 1988; Double stranded DNA sequencing as a choice for DNA sequencing. Nucleic Acids Research 16:1220
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-7-1557
Loading
/content/journal/micro/10.1099/00221287-137-7-1557
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error