1887

Abstract

Summary: In the purple non-sulphur bacterium , genes encoding structural polypeptides of the lightharvesting (LH) and reaction center (RC) complexes incorporated into an intracytoplasmic photosynthetic membrane are induced upon lowering the oxygen tension in the media of aerobically growing cultures. When cultures are grown microaerophilically in the dark, an intracytoplasmic photosynthetic membrane develops gratuitously if a terminal oxidant, such as dimethylsulphoxide (DMSO) is present in the medium. The purpose of the present study was to determine whether in these conditions, photosynthetic genes are completely derepressed or whether they are still inducible in response to a lowering of oxygen tension. Oxygen induction of mRNA for the and operons was compared in dark aerobic cultures (20% O) shifted to low oxygen conditions (3% O) allowing growth microaerophilically with or without DMSO as an accessory terminal oxidant. The extent of the induction was similar in both growth conditions, 6 to 12-fold for mRNA and at least 400-fold for mRNA which encode the light-harvesting I (LHI) and light-harvesting II (LHII) polypeptides, respectively. The and operons were also induced by low oxygen tension in a mutant strain blocked in an early step of bacteriochlorophyll (BChl) synthesis, suggesting that the presence of BChl may not be a prerequisite for the normal oxygen regulation of the genes encoding the structural polypeptides of the photosynthetic apparatus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-7-1551
1991-07-01
2021-05-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/7/mic-137-7-1551.html?itemId=/content/journal/micro/10.1099/00221287-137-7-1551&mimeType=html&fmt=ahah

References

  1. Armstrong G. A. 1989 A molecular genetic analysis of carotenoid biosynthesis and the effects of carotenoid mutations on other photosynthetic genes in Rhodobacter capsulatus. PhD thesis University of California; Berkeley, USA:
    [Google Scholar]
  2. Bauer C. E., Eleuterio M., Young D. A., Marrs B. L. 1987; Analysis of transcription through the Rhodobacter capsulatus puf operon using a transcriptional fusion of pufM to the E. coli LacZ gene. Progress in Photosynthesis Research699–705 Biggins J. Dordrecht, The Netherlands: Nijhoff;
    [Google Scholar]
  3. Biel A. J., Marrs B. L. 1983; Transcriptional regulation of several genes for bacteriochlorophyll biosynthesis in Rhodopseudomonas capsulata in response to oxygen. Journal of Bacteriology 156:686–694
    [Google Scholar]
  4. Cook D. N., Armstrong G. A., & Hearst J. E. 1989; Induction of anaerobic gene expression in Rhodobacter capsulatus is not accompanied by a local change in chromosomal supercoiling as measured by a novel assay. Journal of Bacteriology 171:4836–4843
    [Google Scholar]
  5. Cox J. C., Madigan M., Favinger J. F., Gest H. 1980; Redox mechanisms in ‘oxidant-dependent’ hexose fermentation by Rhodo-pseudomonas capsulatus. Archives of Biochemistry and Biophysics 204:10–17
    [Google Scholar]
  6. Daldal F. 1988; Cytochrome c2 independent respiratory growth of Rhodobacter capsulatus. Journal of Bacteriology 170:2388–2391
    [Google Scholar]
  7. Gabellini N., Sebald W. 1986; Nucleotide sequence and transcription of the fbc operon from Rhodopseudomonas sphaeroides. European Journal of Biochemistry 154:569–579
    [Google Scholar]
  8. Gray E. D. 1967; Studies on the adaptive formation of photosynthetic structures in Rhodopseudomonas sphaeroides. I. Synthesis of macromolecules. Biochimica et Biophysica Acta 138:550–563
    [Google Scholar]
  9. Klug G., Kaufman N., Drews G. 1984; The expression of genes encoding proteins of B800-850 antenna-pigment complex and ribosomal RNA of Rhodopseudomonas capsulata. FEBS Letters 177:61–65
    [Google Scholar]
  10. Klug G., Kaufman N., Drews G. 1985; Gene expression of pigment-binding proteins of the bacterial photosynthetic apparatus : transcription and assembly in the membrane of Rhodopseudomonas capsulata. Proceedings of the National Academy of Sciences of the United States of America 826485–6489
    [Google Scholar]
  11. Klug G., Liebantz R., Drews G. 1986; The influence of bacteriochlorophyll biosynthesis on formation of pigment-binding proteins and assembly of pigment protein complexes in Rhodopseudomonas capsulata. Archives of Microbiology 146:284–291
    [Google Scholar]
  12. Lovelock J. E., Maggs R. J., Rasmussen R. A. 1972; Atmospheric dimethylsulphide and the natural sulphur cycle. Nature, London 231:452–453
    [Google Scholar]
  13. McEwan A. G., Ferguson S. J., Jackson J. B. 1983; Electron flow to dimethyl-N-oxide generates a membrane potential in Rhodopseudomonas capsulatus. Archives of Microbiology 136:300–305
    [Google Scholar]
  14. McEwan A. G., Ferguson S. J., Jackson J. B. 1984; Rationalization of properties of nitrate reductases in Rhodopseudomonas capsulatus. Archives of Microbiology 137:344–349
    [Google Scholar]
  15. McEwan A. G., Wetzstein H. G., Ferguson S. J., Jackson J. B. 1985; Periplasmic location of the terminal reductase in trimethyl-amine N-oxide and dimethylsulphoxide respiration in the photosynthetic bacterium Rhodopseudomonas capsulatus. Biochimica et Biophysica Acta 806:410–417
    [Google Scholar]
  16. McEwen A., Richardson D. J., Hudig H., Ferguson S., Jackson J. B. 1989; Identification of cytochromes involved in electron-transport to trimethylamine N-oxide/dimethylsulphoxide reductase in Rhodobacter capsulatus. Biochemica et Biophysica Acta 973:308–314
    [Google Scholar]
  17. Madigan M., Cox J. C., Gest H. 1980; Physiology of dark fermentative growth of Rhodopseudomonas capsulata. Journal of Bacteriology 142:908–915
    [Google Scholar]
  18. Marrs B., Gest H. 1973; Genetic mutations affecting electron transport system of the photosynthetic bacterium Rhodopseudomonas capsulata. Journal of Bacteriology 114:1045–1051
    [Google Scholar]
  19. Marrs B. 1981; Mobilization of the genes for photosynthesis from Rhodopseudomonas capsulata by a promiscuous plasmid. Journal of Bacteriology 146:1003–1012
    [Google Scholar]
  20. Oelze J., Drews G. 1972; Membranes of photosynthetic bacteria. Biochimica et Biophysica Acta 265:209–239
    [Google Scholar]
  21. Richardson D. J., Kelly D. J., Jackson J. B., Ferguson S. J., Alef K. 1986; Inhibitory effects of myxothiazol and 2-n-heptyl-4-hydroxyquinone-N-oxide on the auxiliary electron transport pathways of Rhodobacter capsulatus. Archives of Microbiology 146:159–165
    [Google Scholar]
  22. Richardson D. J., King G. F., Kelly D. J., McEwan A. G., Ferguson S. J., Jackson J. B. 1988; The role of auxiliary oxidants in maintaining redox balance during phototrophic growth of Rhodobacter capsulatus on propionate or butyrate. Archives of Microbiology 150:131–137
    [Google Scholar]
  23. Schultz J. E., Weaver P. F. 1982; Fermentation and anaerobic respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata. Journal of Bacteriology 149:181–190
    [Google Scholar]
  24. Weaver P. F., Wall J. D., Gest H. 1975; Characterization of Rhodopseudomonas capsulata. Archives of Microbiology 105:207–216
    [Google Scholar]
  25. Yen H.-C., Marrs B. 1977; Growth of Rhodopseudomonas capsulata under anaerobic dark conditions with dimethyl sulfoxide. Archives of Biochemistry and Biophysics 181:411–418
    [Google Scholar]
  26. Youvan D. C., Bylina E. J., Alberti M., Begusch H., Hearst J. E. 1984; Nucleotide and deduced polypeptide sequences of the photosynthetic reaction-center, B870 antenna and flanking polypeptides from R. capsulata. Cell 37:949–957
    [Google Scholar]
  27. Youvan D. C., Ismail S. 1985; Light-harvesting II (B800-B850) complex structural genes from Rhodopseudomonas capsulata. Proceedings of the National Academy of Sciences of the United States of America 8258–62
    [Google Scholar]
  28. Yu P. L., Hohn B., Falk H., Drews G. 1982; Molecular cloning of the ribosomal RNA genes of the photosynthetic bacterium Rhodopseudomonas capsulata. Molecular and General Genetics 188:392–398
    [Google Scholar]
  29. Zannoni D., Marrs B. L. 1981; Redox chain and energy transduction in chromatophores from Rhodopseudomonas capsulata cells grown anaerobically in the dark on glucose and dimethyl sulfoxide. Biochimica et Biophysica Acta 637:96–106
    [Google Scholar]
  30. Zhu Y.-S., Kaplan S. 1985; Effects of light, oxygen, and substrates on steady-state levels of mRNA coding for ribulose-1,5- bisphosphate carboxylase and light-harvesting and reaction center polypeptides in Rhodopseudomonas sphaeroides. Journal of Bacteriology 162:925–932
    [Google Scholar]
  31. Zhu Y.-S., Cook D. N., Leach F., Armstrong G. A., Alberti M., Hearst J. E. 1986; Oxygen-regulated mRNAs for light- harvesting, bacteriochlorophyll and carotenoid biosynthesis in Rhodobacter capsulatus during the shift from anaerobic to aerobic growth. Journal of Bacteriology 168:1180–1188
    [Google Scholar]
  32. Zhu Y.-S., Hearst J. E. 1986; Regulation of expression of genes for light-harvesting antenna proteins LH-I and LH-II; reaction center polypeptides RC-L, RC-M and RC-H; and enzymes of bacteriochlorophyll and carotenoid biosynthesis in Rhodobacter capsulatus by light and oxygen. Proceedings of the National Academy of Sciences of the United States of America 837613–7617
    [Google Scholar]
  33. Zsebo K. M., Hearst J. E. 1984; Genetic-physical mapping of a photosynthetic gene cluster form R. capsulata. Cell 31:937–9476
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-7-1551
Loading
/content/journal/micro/10.1099/00221287-137-7-1551
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error