1887

Abstract

Summary: The total fatty acid content of the estuarine sp. strain Inp and the relative proportions of its constituent fatty acids were affected by growth temperature and salinity. Whilst both the proportion and concentration of the polyunsaturates were markedly stimulated by increases in salinity, the total amount of fatty acid per mg cell protein decreased. The highest concentration of fatty acid per mg cell protein did not coincide with the highest percentage of polyunsaturated fatty acids, which occurred when the bacterium was grown on glucose. The presence of an inverse relationship between C16: 1w5 and C18: 1w9 are regarded as evidence that two different pathways exist for the biosynthesis of unsaturated fatty acids in strain Inp.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-7-1503
1991-07-01
2021-04-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/7/mic-137-7-1503.html?itemId=/content/journal/micro/10.1099/00221287-137-7-1503&mimeType=html&fmt=ahah

References

  1. Bligh E. G., Dyer W. J. 1959; A rapid method of lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 39:911–917
    [Google Scholar]
  2. Boulton C. A., Ratledge C. 1985; Biosynthesis of fatty acids and lipids. Comprehensive Biotechnology 1459–482 Bull A. T., Dalton H.. Oxford: Pergamon Press;
    [Google Scholar]
  3. Delong E. F., Yayanos A. A. 1986; Biochemical function and ecological significance of novel bacterial lipids in deep-sea prokaryotes. Applied and Environmental Microbiology 51:730–737
    [Google Scholar]
  4. Fautz E., Rosenfelder G., Grotjahn L. 1979; Iso-branched 2- and 3-hydroxy fatty acids as characteristic lipid constituents of some gliding bacteria. Journal of Bacteriology 140:852–858
    [Google Scholar]
  5. Fulco A. J. 1970; The biosynthesis of unsaturated fatty acids in bacilli. II. Temperature dependent biosynthesis of polyunsaturated fatty acids. Journal of Biological Chemistry 245:2985–2990
    [Google Scholar]
  6. Fulco A. J. 1983; Fatty acid metabolism in bacteria. Progress in Lipid Research 22:133–160
    [Google Scholar]
  7. Hanson R. S., Phillips J. A. 1981; Chemical composition. Manual of Methods for General Bacteriology328–364 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington: American Society for Microbiology;
    [Google Scholar]
  8. Harwood J. L., Russell N. J. 1984 Lipids in Plants and Microbes London: Allen and Unwin;
    [Google Scholar]
  9. Imhoff J. F., Rodriguez-Valera F. 1984; Betaine is the main compatible solute of halophilic eubacteria. Journal of Bacteriology 160:478–479
    [Google Scholar]
  10. Johns R. B., Perry G. C. 1977; Lipids of the marine bacterium Flexibacter polymorphus. Archives of Microbiology 114:267–271
    [Google Scholar]
  11. Kates M. 1986a; Influence of salt concentration on membrane lipids of halophilic bacteria. FEMS Microbiology Reviews 39:95–101
    [Google Scholar]
  12. Kates M. 1986b Techniques in Lipidology. Isolation, analysis and Identification of Lipids, 2nd. Burdon R. H., van Knippenberg P. H. Amsterdam: Elsevier;
    [Google Scholar]
  13. Kawagushi A., Seyama Y. 1984; Thermal control of fatty acid synthetases in bacteria. Membrane Fluidity271–301 Kates M., Manson L. A. New York: Plenum Press;
    [Google Scholar]
  14. Kidwell P. A., Biemann K. 1982; Determination of double bond position and geometry of olefins by mass spectrometry of their Diels- Alder adducts. Analytical Chemistry 54:2462–2465
    [Google Scholar]
  15. Larsson L., Odham G. 1984; Injection principles in capillary gas chromatographic analysis of bacterial fatty acids. Journal of Microbiological Methods 3:77–82
    [Google Scholar]
  16. Le Rudulier D., Bouillard L. 1983; Glycine betaine, an osmotic effector in Klebsiella pneumoniae and other members of the Enterobacteriaceae. Applied and Environmental Microbiology 46:152–159
    [Google Scholar]
  17. Le Rudulier D., Bernard T., Goas G., Hamelin J. 1984; Osmoregulation in Klebsiella pneumoniae : enhancement of anaerobic growth and nitrogen fixation under stress by proline betaine, -butyrobetaine and other related compounds. Canadian Journal of Microbiology 30:299–305
    [Google Scholar]
  18. Marr A. G., Ingraham J. L. 1962; Effect of temperature on the composition of fatty acids in Escherichia coli. Journal of Bacteriology 84:1260–1267
    [Google Scholar]
  19. Miller K. J. 1985; Effect of temperature and sodium chloride concentration on the phospholipid and fatty acid composition of a halotolerant Planococcus sp. Journal of Bacteriology 162:263–270
    [Google Scholar]
  20. Miller K. J. 1986; Effects of monovalent and divalent salts on the phospholipid and fatty acid composition of a halotolerant Planococcus sp. Applied and Environmental Microbiology 52:580–582
    [Google Scholar]
  21. Monteoliva-Sanchez M., Ferrer M. R., Ramos-Cormenzana A., Quesada E., Monteoliva M. 1988; Cellular fatty acid and composition of Deleya halophila: effect of growth temperature and salt concentration. Journal of General Microbiology 134:199–203
    [Google Scholar]
  22. Moss C. W., Lambert M. A., Merwin W. H. 1974; Comparison of rapid methods for analysis of bacterial fatty acids. Applied Microbiology 28:80–85
    [Google Scholar]
  23. Nichols P. D., Shaw P. M., Johns R. B. 1985; Determination of double bond position and geometry in monoenoic fatty acids from complex microbial and environmental samples by capillary GC-MS of their Diels-Alder adducts. Journal of Microbiological Methods 3:311–329
    [Google Scholar]
  24. Nichols P. D., Stulp B. K., Jones J. G., White D. C. 1986; Comparison of fatty acid content and DNA homology of the filamentous gliding bacteria Vitreoscilla, Flexibacter, Filibacter. Archives of Microbiology 146:1–6
    [Google Scholar]
  25. Nunn W. D. 1986; Molecular view of fatty acid catabolism in Escherichia coli. Microbiological Reviews 50:179–192
    [Google Scholar]
  26. Okuyama H., Yamada R., Akamatsu Y., Nojima S. 1977; Regulation of membrane lipid synthesis in Escherichia coli after shifts in temperature. Biochemistry 16:2668–2673
    [Google Scholar]
  27. Oppenheimer C. H., ZoBell C. E. 1952; The growth and viability of sixty-three species of marine bacteria as influenced by hydrostatic pressure. Journal of Marine Research 11:10–18
    [Google Scholar]
  28. Poen E., Aufderheide M., Diekmann H., Kroppenstedt R. H. 1984; Taxonomie studies on filamentous bacteria from sewage belonging to the Flavobacterium-Cytophaga complex. Archives of Microbiology 137:295–301
    [Google Scholar]
  29. Pugh E. L., Wassef M. K., Kates M. 1971; Inhibition of fatty acid synthetase in Halobacterium cutirubrum Escherichia coli by high salt concentrations. Canadian Journal of Biochemistry 49:923–958
    [Google Scholar]
  30. Reichenbach H. 1989; Genus Microscilla. Bergey’s Manual of Systematic Bacteriology 32071–2073 Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  31. Reichenbach H., Dworkin M. 1981; Introduction to the gliding bacteria. The Prokaryotes 1315–327 Starr M. P., Stolp H., Truper H. G., Balows A., Schlegel H. G. Berlin: Springer-Verlag;
    [Google Scholar]
  32. Riley J. P., Chester R. 1971 Introduction to Marine Chemistry465 London: Academic Press;
    [Google Scholar]
  33. Rose A. H. 1989; Influence of the environment on microbial lipid composition. Microbial Lipids 2255–278 Ratledge C., Wilkinson S. C. London: Academic Press;
    [Google Scholar]
  34. Russell N. J., Kogut M. 1985; Haloadaptation: salt sensing and cell-envelope changes. Microbiological Sciences 11:345–350
    [Google Scholar]
  35. Shaw N. 1974; Lipids composition as a guide to the classification of bacteria. Advances in Applied Microbiology 17:63–108
    [Google Scholar]
  36. Scheuerbrand G., Bloch K. 1962; Unsaturated fatty acids in microorganisms. Journal of Biological Chemistry 237:2064–2068
    [Google Scholar]
  37. Schweizer E. 1989; Biosynthesis of fatty acids and related compounds. Microbial Lipids 23–50 Ratledge C., Wilkinson S. C. London: Academic Press;
    [Google Scholar]
  38. Wada M., Fukunaga N., Sasaki S. 1989; Mechanism of biosynthesis of unsaturated fatty acids in Pseudomonas sp. strain E-3, a psychrotropic bacterium. Journal of Bacteriology 171:4267–4271
    [Google Scholar]
  39. Walker R. W. 1969; Cis-ll-hexadecenoic acid from Cytophaga hutchinsonii. Lipids 14:15–18
    [Google Scholar]
  40. Weeks G., Wakil S. J. 1970; Studies on the control of fatty acid metabolism. II. The inhibition of fatty acid synthesis in Lactobacillus plantarum by exogenous fatty acid. Journal of Biological Chemistry 245:1913–1921
    [Google Scholar]
  41. White D. C., Davies W. M., Nichels J. S., King J. D., Bobbie R. J. 1979; Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 45:51–62
    [Google Scholar]
  42. Wirsen C. O., Jannasch H. W., Wakeham S. G., Canuel E. A. 1987; Membrane lipids of a psychrophilic and barophilic deep-sea bacteria. Current Microbiology 14:319–322
    [Google Scholar]
  43. Wood B. J. B. 1974; Fatty acids and saponificable lipids. Botanical Monographs 8:236–265
    [Google Scholar]
  44. Yazawa K., Araki K., Watanable K., Ishikawa C., Inoue A., Kondo K., Watabe S., Hashimoto K. 1988; Eicosapentaenoic acid productivity of the bacteria isolated from fish intestines. Nippon Suisan Gakkaishi 54:1835–1838
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-7-1503
Loading
/content/journal/micro/10.1099/00221287-137-7-1503
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error