1887

Abstract

Summary: The gene encoding the bifunctional P-protein (chorismate mutase: prephenate dehydratase) was cloned from and sequenced. This is the first gene of phenylalanine biosynthesis to be cloned and sequenced from . The gene was expressed in , allowing complementation of an auxotroph. The enzymic and physical properties of the P-protein from a recombinant auxotroph expressing the gene were identical to those of the native enzyme from . The nucleotide sequence of the gene was 1095 base pairs in length, predicting a 365-residue protein product with an of 40844. Codon usage in the gene was similar to that of but unusual in that cytosine and guanine were used at nearly equal frequencies in the third codon position. The deduced P-protein product showed sequence homology with peptide sequences of the P-protein, the N-terminal portion of the T-protein (chorismate mutase: prephenate dehydrogenase), and the monofunctional prephenate dehydratases of and . A narrow range of values (26-35%) for amino acid matches revealed by pairwise alignments of monofunctional and bifunctional proteins possessing activity for prephenate dehydratase suggests that extensive divergence has occurred between even the nearest phylogenetic lineages.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-6-1293
1991-06-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/6/mic-137-6-1293.html?itemId=/content/journal/micro/10.1099/00221287-137-6-1293&mimeType=html&fmt=ahah

References

  1. Ahmad S., Jensen R. A. 1986; The evolutionary history of two bifunctional proteins that emerged in the purple bacteria. Trends in Biochemical Sciences 11:108–112
    [Google Scholar]
  2. Ahmad S., Jensen R. A. 1988a; New prospects for deducing the evolutionary history of metabolic pathways in prokaryotes. aromatic biosynthesis as a case-in-point. Origins of Life 18:41–57
    [Google Scholar]
  3. Ahmad S., Jensen R. A. 1988b; Phylogenetic distribution of components of the overflow pathway to l-phenylalanine within the enteric lineage of bacteria. Current Microbiology 16:295–302
    [Google Scholar]
  4. Ahmad S., Wilson A. T., Jensen R. A. 1988; Chorismate mutase: prephenate dehydratase from Acinetobacter calcoaceticus. Purification, properties and immunological cross-reactivity. European Journal of Biochemistry 176:69–79
    [Google Scholar]
  5. Baldwin G. S., Davidson B. E. 1981; A kinetic and structural comparison of chorismate mutase/prephenate dehydratase from mutant strains of Escherichia coli K-12 defective in the pheA gene. Archives of Biochemistry and Biophysics 211:66–75
    [Google Scholar]
  6. Berry A., Ahmad S., Liss A., Jensen R. A. 1987; Enzymological features of aromatic amino acid biosynthesis reflect the phylogeny of mycoplasmas. Journal of General Microbiology 133:2147–2154
    [Google Scholar]
  7. Brendel V., Trifonov E. N. 1984; A computer algorithm for testing potential prokaryotic terminators. Nucleic Acids Research 12:4411–4427
    [Google Scholar]
  8. Byng G. S., Jensen R. A. 1983; Impact of isozymes upon partitioning of carbon flow and regulation of aromatic biosynthesis in prokaryotes. Isozymes 8115–140 Ratazzi M. C., Scandalios J. G., Whitt G. S. New York: Alan R. Liss;
    [Google Scholar]
  9. Byng G. S., Whitaker R. J., Jensen R. A. 1983; Evolution of l-phenylalanine biosynthesis in rRNA homology group I of Pseudo-monas. Archives of Microbiology 136:163–168
    [Google Scholar]
  10. Carlson C. A., Pierson L. S., Rosen J. J., Ingraham J. L. 1983; Pseudomonas stutzeri and related species undergo natural transformation. Journal of Bacteriology 153:93–99
    [Google Scholar]
  11. Carlson C. A., Steenbergen S. M., Ingraham J. L. 1984; Natural transformation of Pseudomonas stutzeri by plasmids that contain cloned fragments of chromosomal deoxyribonucleic acid. Archives of Microbiology 140:124–138
    [Google Scholar]
  12. Clewell D. B., Helinski D. R. 1969; Supercoiled circular DNA-protein complex in Escherichia coli: purification and induced conversion to an open circular form. Proceedings of the National Academy of Sciences of the United States of America 621159–1166
    [Google Scholar]
  13. Cotton R. G. H., Gibson F. 1965; The biosynthesis of phenylalanine and tyrosine: enzymes converting chorismic acid into prephenic acid and their relationships to prephenate dehydratase and prephenate dehydrogenase. Biochimica et Biophysica Acta 100:76–88
    [Google Scholar]
  14. Crawford I. P, Eberly L. 1986; Structure and regulation of the anthranilate synthase genes in Pseudomonas aeruginosa. I. Sequence of trpG encoding the glutamine amidotransferase subunit. Molecular Biology and Evolution 3:436–448
    [Google Scholar]
  15. Dagert M., Ehrlich S. D. 1979; Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene 6:23–28
    [Google Scholar]
  16. Davis R. W., Botstein D., Roth J. R. 1980a Advanced Bacterial Genetics201 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  17. Davis R. W., Thomas M., Cameron J., St John T. P., Scherer S., Padgett R. A. 1980b; Rapid DNA isolations for enzymatic and hybridization analysis. Methods in Enzymology 65:404–411
    [Google Scholar]
  18. Dayan J., Sprinson D. B. 1970; Preparation of prephenic acid. Methods in Enzymology 17A:559–561
    [Google Scholar]
  19. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  20. Essar D. W., Eberly L., Hadero A., Crawford I. P. 1990; Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. Journal of Bacteriology 172:884–900
    [Google Scholar]
  21. Fazel A. M., Jensen R. A. 1980; Regulation of phephenate dehydratase in coryneform species of bacteria by l-phenylalanine and by remote effectors. Archives of Biochemistry and Biophysics 200:165–176
    [Google Scholar]
  22. Fischer R. S., Berry A., Gaines C. G., Jensen R. A. 1986; Comparative action of glyphosate as a trigger of energy drain in eubacteria. Journal of Bacteriology 168:1147–1154
    [Google Scholar]
  23. Follettie M. T., Sinskey A. J. 1986; Molecular cloning and nucleotide sequence of the Corynebacterium glutamicum pheA gene. Journal of Bacteriology 167:695–702
    [Google Scholar]
  24. Fujita M., Torigoe K., Nakada T., Tsusaki K., Kubota M., Sakai S., Tsujisaka Y. 1989; Cloning and nucleotide sequence of the gene (amyP) for maltotetraose-forming amylase from Pseudomonas stutzeri MO-19. Journal of Bacteriology 171:1333–1339
    [Google Scholar]
  25. Gibson F. 1964; Chorismic acid: purification and some chemical and physical studies. Biochemical Journal 90:256–257
    [Google Scholar]
  26. Gray J. V., Golinelli-Pimpaneau B., Knowles J. R. 1990; Monofunctional chorismate mutase from Bacillus subtilis: purification of the protein, molecular cloning of the gene and overexpression of the gene product in Escherichia coli. Biochemistry 29:376–383
    [Google Scholar]
  27. Hoch J. A., Nester E. W. 1973; Gene-enzyme relationships of aromatic acid biosynthesis in Bacillus subtilis. Journal of Bacteriology 116:59–66
    [Google Scholar]
  28. Hohn B., Collins J. 1980; A small cosmid for efficient cloning of large DNA fragments. Gene 11:291–298
    [Google Scholar]
  29. Hudson G. S., Davidson B. E. 1984; Nucleotide sequence and transcription of the phenylalanine and tyrosine operons of Escherichia coli K-12. Journal of Molecular Biology 180:1023–1051
    [Google Scholar]
  30. Humphreys G. O., Willshaw G. A., Anderson E. S. 1975; A simple method for the preparation of large quantities of pure plasmid DNA. Biochimica et Biophysica Acta 383:457–463
    [Google Scholar]
  31. Kupersztoch Y. M., Helinski D. R. 1973; A catenated DNA molecule as an intermediate in the replication of the resistance transfer factor R6K in Escherichia coli. Biochemical and Biophysical Research Communications 54:1451–1459
    [Google Scholar]
  32. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Miller J. H. 1972 Experiments in Molecular Genetics431–435 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Nasser D., Nester E. W. 1967; Aromatic amino acid biosynthesis: gene-enzyme relationships in Bacillus subtilis. Journal of Bacteriology 94:1706–1714
    [Google Scholar]
  35. Palleroni N. J. 1984; Gram-negative aerobic rods and cocci. Family I. Pseudomonadaceae. Bergeys Manual of Systematic Bacteriology 1172–173 Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  36. Palleroni N. J., Kunisawa R., Contopoulas R., Doudoroff M. 1973; Nucleic acid homologies in the genus Pseudomonas. International Journal of Systematic Bacteriology 23:333–339
    [Google Scholar]
  37. Patel N., Pierson D. L., Jensen R. A. 1977; Dual enzymatic routes to l-tyrosine and l-phenylalanine via pretyrosine in Pseudomonas aeruginosa. Journal of Biological Chemistry 252:5839–5846
    [Google Scholar]
  38. Pierson D. L., Jensen R. A. 1974; Metabolic interlock: control of an interconvertible prephenate dehydratase by hydrophobic amino acids in Bacillus subtilis. Journal of Molecular Biology 90:563–579
    [Google Scholar]
  39. Prober J. M., Trainor G. L., Dam R. J., Hobbs F. W., Robertson C. W., Zagursky R. J., Cocuzza A. J., Jensen M. A., Baumeister K. 1987; A system for rapid DNA sequencing with fluorescent chain-terminating dideoxy nucleotides. Science 238:336–341
    [Google Scholar]
  40. Schmidheini T., Sperisen P., Paravicini G., Hutter R., Braus G. 1989; A single point mutation results in a constitutively activated and feedback-resistant chorismate mutase of Saccharomyces cerevisiae. Journal of Bacteriology 171:1245–1253
    [Google Scholar]
  41. Shiio I., & Sugimota S. 1979; Two components of chorismate mutase in Brevibacterium flavum. Journal of Biochemistry 86:17–25
    [Google Scholar]
  42. Shine J., Dalgarno L. 1974; The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proceedings of the National Academy of Sciences of the United States of America 711342–1346
    [Google Scholar]
  43. Shine J., Dalgarno L. 1975; Determination of cistron specificity in bacterial ribosomes. Nature, London 254:34–38
    [Google Scholar]
  44. Trach K., Hoch J. A. 1989; The Bacillus subtilis spoOB stage 0 sporulation operon encodes an essential GTP-binding protein. Journal of Bacteriology 171:1362–1371
    [Google Scholar]
  45. West S. E. H., Iglewski B. H. 1988; Codon usage in Pseudomonas aeruginosa. Nucleic Acids Research 16:9323–9335
    [Google Scholar]
  46. Yuan R., Lin Y. 1982; The purification of restriction enzymes and DNA substrates. Their use in DNA sequencing. Genetic Engineering Techniques: Recent Developments337–349 Huang P. C., Kuo T. T., Wu R. New York: Academic Press;
    [Google Scholar]
  47. Zamir L. O., Tiberio R., Fiske M., Berry A., Jensen R. A. 1985; Enzymatic and nonenzymatic dehydration reactions of l-arogenate. Biochemistry 24:1607–1612
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-6-1293
Loading
/content/journal/micro/10.1099/00221287-137-6-1293
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error