1887

Abstract

Catabolite repression by galactose was investigated in several strains of grown on different carbon sources. Galactose repressed as much as glucose; raffinose was less effective. Full derepression was achieved with lactate. The functions tested were -lactate ferricytochrome oxidoreductase, NAD-glutamate dehydrogenase, and respiration. Galactose repression was observed only in the but not in the strain. The presence of multiple copies of the gene enhanced the repression by galactose. Different alleles of the gene and the copy number did not affect glucose repression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-5-1039
1991-05-01
2021-08-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/5/mic-137-5-1039.html?itemId=/content/journal/micro/10.1099/00221287-137-5-1039&mimeType=html&fmt=ahah

References

  1. Algeri A. A., Bianchi L., Viola A. M., Puglisi P. P., Marmiroli N. 1981; IMPl/impl :a gene involved in the nucleo-mitochondrial control of galactose fermentation in Saccharomyces cerevisiae. Genetics 97:27–44
    [Google Scholar]
  2. Beck C. K., von Meyenburg H. K. 1968; Enzyme pattern and aerobic growth of Saccharomyces cerevisiae under various degrees of glucose limitation. Journal of Bacteriology 96:479–486
    [Google Scholar]
  3. Douglas H. C., Hawthorne D. C. 1964; Enzymatic expression and genetic linkage controlling galactose utilization in Saccharomyces. Genetics 49:837–844
    [Google Scholar]
  4. Duntze W., Neumann D., Gancedo J. M., Atzpodien W., Holzer H. 1969; Studies on the regulation and localization of the glyoxylate cycle enzymes in Saccharomyces cerevisiae. European Journal of Biochemistry 10:83–89
    [Google Scholar]
  5. Eraso P., Gancedo J. M. 1984; Catabolite repression in yeasts is not associated with low levels of cAMP. European Journal of Biochemistry 141:195–198
    [Google Scholar]
  6. Gancedo C., Salas M. L., Giner A., Sols A. 1965; Reciprocal effects of carbon sources on the levels of AMP-sensitive fructose-1,6-diphosphatase and phosphofructokinase in yeast. Biochemical and Biophysical Research Communications 20:15–20
    [Google Scholar]
  7. Gancedo C., Gancedo J. M., Sols A. 1967; Metabolite repression of fructose 1,6-diphosphatase in yeast. Biochemical and Biophysical Research Communications 26:518–521
    [Google Scholar]
  8. Gasser S. M., Ohashi A., Daum G., Bohni P. C., Gibson J., Reid G. A., Yonetani T., Schatz G. 1982; Imported mitochondrial proteins cytochrome b2 and cytochrome c1 are processed in two steps. Proceedings of the National Academy of Sciences of the United States of America 79267–271
    [Google Scholar]
  9. Gill G., Ptashne M. 1988; Negative effect of the transcriptional activator GAL4. Nature; London: 334721–724
    [Google Scholar]
  10. Gorts C. P. M. 1967; Effect of different carbon sources on the regulation of carbohydrate metabolism in Saccharomyces cerevisiae. Antonie van Leeuwenhoek 33:451–463
    [Google Scholar]
  11. Grisolia S., Quisado C. L., Fernandez M. 1964; Glutamate dehydrogenase from yeast and from animal tissues. Biochimica et Biophysica Acta 81:61–70
    [Google Scholar]
  12. Guiard B. 1985; Structure, expression and regulation of a nuclear gene encoding a mitochondrial protein: the yeast L(+)-lactate cytochrome c oxidoreductase (cytochrome b 2). EMBO Journal 4:3265–3272
    [Google Scholar]
  13. Ito H., Fukada Y., Murata K., Kimura a. 1983; Transformation of intact cells treated with alkali cations. Journal of Bacteriology 153:163–168
    [Google Scholar]
  14. Johnston M. 1987; A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiological Reviews 51:458–476
    [Google Scholar]
  15. Laughon A., Gesteland F. R. 1984; Primary structure of the Saccharomyces cerevisiae GAL4 gene. Molecular and Cellular Biology 4:260–267
    [Google Scholar]
  16. Magni G., von Borstel R. C. 1962; Different rates of spontaneous mutation during mitosis and meiosis in yeast. Genetics 47:1097–1108
    [Google Scholar]
  17. Mahler H. R., Lin C. C. 1978; Molecular events during the release of α-aminolevulinate dehydratase from catabolite repression. Journal of Bacteriology 135:54–61
    [Google Scholar]
  18. Mandel, Higa. 1970; Calcium dependent bacteriophage DNA infection. Journal of Molecular Biology 53:159–162
    [Google Scholar]
  19. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular cloning: a laboratory manual Cold Spring Harbor, New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. Mortimer R. K., Hawthorne D. C. 1969; Yeast genetics. In. The Yeasts 1 Rose A. H., Harrison J. S. New York: Academic Press;
    [Google Scholar]
  21. Perlman P., Mahler H. R. 1974; Derepression of mitochondria and their enzymes in yeast: Regulatory aspects. Archives of Biochemistry and Biophysics 162:248–271
    [Google Scholar]
  22. Pfanner N., Hartl F. U., Neupert W. 1988; Import of proteins into mitochondria: a multi-step process. European Journal of Biochemistry 175:205–212
    [Google Scholar]
  23. Polakis E. S., Bartley W. 1965; Changes in the enzyme activities of Saccharomyces cerevisiae during aerobic growth on different carbon sources. Biochemical Journal 97:284–297
    [Google Scholar]
  24. Polakis E. S., Bartley W., Meek G. A. 1965; Changes in the activities of respiratory enzymes during the aerobic growth on different carbon sources. Biochemical Journal 97:298–304
    [Google Scholar]
  25. Sherman F., Fink G. R., Hicks J. B. 1986; Laboratory Course Manual for Methods in Yeast Genetics. 143–149 Cold Spring Harbor, New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Slonimski P. P. 1953 La Formation des Enzymes Respiratoires chez la Levure Paris: Masson et Cie Editeurs;
    [Google Scholar]
  27. Somlo M. 1965; Induction des lactico-cytochrome c reductases (d et l) de la levure aerobie par des lactates (d et l). Biochimica et Biophysica Acta 97:183–201
    [Google Scholar]
  28. Szekely E., Montgomery D. L. 1984; Glucose represses transcription of Saccharomyces cerevisiae nuclear genes that encode mitochondrial components. Molecular and Cellular Biology 4:939–946
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-5-1039
Loading
/content/journal/micro/10.1099/00221287-137-5-1039
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error