1887

Abstract

C nuclear magnetic resonance (NMR) spectroscopy was used to study the metabolism of [2-C]acetate in a diploid strain of homozygous for the mutation. This mutation results in failure to initiate sporulation and suppresses mutations (which cause derepressed sporulation). By analysing the pattern of C-labelling in glutamate it was deduced that the glyoxylate cycle is responsible for most of the acetate utilization and that there is very little tricarboxylic acid cycle activity. The labelling of -trehalose indicated that gluconeogenesis and the hexose monophosphate pathway operate in a similar way to the wild-type. The mutant strain has higher levels of succinate dehydrogenase than the wild-type. All of the physiological alterations caused by the mutation can be explained by this difference.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-5-1033
1991-05-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/5/mic-137-5-1033.html?itemId=/content/journal/micro/10.1099/00221287-137-5-1033&mimeType=html&fmt=ahah

References

  1. Calvert G. R., Dawes I. W. 1984; Initiation of sporulation in Saccharomyces cerevisiae. Mutations preventing initiation. Journal of General Microbiology 130:615–624
    [Google Scholar]
  2. Dawes I. W. 1975 Study of cell development using derepressed mutations Nature; London: 255707–708
    [Google Scholar]
  3. Dawes I. W., Calvert G. R. 1984; Initiation of sporulation in Saccharomyces cerevisiae. Mutations causing derepressed sporulation and G1 arrest in the cell division cycle. Journal of General Microbiology 130:605–613
    [Google Scholar]
  4. Dickinson J. R. 1988; The metabolism of sporulation in yeast. Microbiological Sciences 5:121–123
    [Google Scholar]
  5. Dickinson J. R., Hewlins M. J. E. 1988; A study of the role of the hexose monophosphate pathway with respect to fatty acid biosynthesis in sporulation of Saccharomyces cerevisiae. Journal of General Microbiology 134:333–337
    [Google Scholar]
  6. Dickinson J. R., Williams A. S. 1986; A genetic and biochemical analysis of the role of gluconeogenesis in sporulation of Saccharomyces cerevisiae. Journal of General Microbiology 132:2605–2610
    [Google Scholar]
  7. Dickinson J. R., Dawes I. W., Boyd A. S. F., Baxter R. L. 1983; I3C NMR studies of acetate metabolism during sporulation of Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America 805847–5851
    [Google Scholar]
  8. Dickinson J. R., Ambler R. P., Dawes I. W. 1985; Abnormal amino acid metabolism in mutants of Saccharomyces cerevisiae affected in the initiation of sporulation. European Journal of Biochemistry 148:405–406
    [Google Scholar]
  9. Dickinson J. R., Roy D. J., Dawes I. W. 1986; A mutation affecting lipoamide dehydrogenase, pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase activities in Saccharomyces cerevisiae. Molecular and General Genetics 204:103–107
    [Google Scholar]
  10. Esposito M. S., Esposito R. E. 1974; Genes controlling meiosis and spore formation in yeast. Genetics 78:78–89
    [Google Scholar]
  11. Esposito R. E., Klapholz S. 1981; Meiosis and ascospore development. In The Molecular Biology of the Yeast Saccharomyces cerevisiae. Life Cycle and Inheritance211–287 Strathern J. N., Jones E. W., Broach J. R. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  12. Esposito M. S., Esposito R. E., Arnaud M., Halvorson H. O. 1970; Conditional mutants of meiosis in yeast. Journal of Bacteriology 104:202–210
    [Google Scholar]
  13. Fast D. 1973; Sporulation synchrony in yeast. Journal of Bacteriology 116:925–930
    [Google Scholar]
  14. den Hollander J. A., Brown T. R., Ugurbil K., Shulman R.G. 1979; 13C Nuclear magnetic resonance studies of anaerobic glycolysis in suspensions of yeast cells. Proceedings of the National Academy of Sciences of the United States of America 766096–6100
    [Google Scholar]
  15. den Hollander J. A., Behar K. L., Shulman R. G. 1981; 13C NMR study of transamination during acetate utilization by Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America 782693–2697
    [Google Scholar]
  16. Kassir Y., Simchen G. 1989; Pathways leading to meiotic differentiation in the yeast Saccharomyces cerevisiae. Current Genetics 15:167–170
    [Google Scholar]
  17. London R. E. 1988; l3C labeling in studies of metabolic regulation. Progress in NMR Spectroscopy 20:337–383
    [Google Scholar]
  18. Shilo V., Simchen G., Shilo B. 1978; Initiation of meiosis in cell cycle initiation mutants of Saccharomyces cerevisiae. Experimental Cell Research 112:241–248
    [Google Scholar]
  19. Vezinhet F., Kinnaird J. H., Dawes I. W. 1979; The physiology of mutants derepressed for sporulation in Saccharomyces cerevisiae. Journal of General Microbiology 115:391–402
    [Google Scholar]
  20. Walker T. E., Han C. H., Kollman V. H., London R. E., Matwiyoff N. A. 1982; 13C nuclear magnetic resonance studies of the biosynthesis by Microbacterium ammoniaphilum of l-glutamate selectively enriched with carbon-13. Journal of Biological Chemistry 257:1189–1195
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-5-1033
Loading
/content/journal/micro/10.1099/00221287-137-5-1033
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error