Development of molecular methods for the detection of specific bacteria in the environment Free

Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-5-1009
1991-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/5/mic-137-5-1009.html?itemId=/content/journal/micro/10.1099/00221287-137-5-1009&mimeType=html&fmt=ahah

References

  1. Amman R. I., Krumholz L., Stahl D. A. 1990a; Fluorescent oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. Journal of Bacteriology 177:762–770
    [Google Scholar]
  2. Amman R. I., Binder B. J., Olsen R. J., Chisholm S. W., Devereux R., Stahl D. A. 1990b; Combination of 16S rRNA-targetted oligonucleotide probes with flow cytometry for analysing mixed microbial populations. Applied and Environmental Microbiology 56:1919–1925
    [Google Scholar]
  3. Apel W. A., Dugan P. R., Filippi J. A., Rheins M. A. 1976; Detection of Thiobacillus ferrooxidansin acid mine environments by direct fluorescent antibody technique. Applied and Environmental Microbiology 32:159–165
    [Google Scholar]
  4. Atlas R. M. 1983; Use of microbial diversity measurements to assess environmental stress. In Current Perspectives in Microbial Ecology540–545 Klug M. J., Reddy C. A. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Austin B. 1988 Methods in Aquatic Bacteriology Chichester: John Wiley;
    [Google Scholar]
  6. Barkay T., Fouts D. L., Olsen B. H. 1985; Preparation of a DNA gene probe for the detection of mercury resistance genes in Gram-negative bacterial communities. Applied and Environmental Microbiology 49:686–692
    [Google Scholar]
  7. Belser L. W., Schmidt E. L. 1978; Serological diversity within a terrestrial ammonia oxidising population. Applied and Environmental Microbiology 49:584–588
    [Google Scholar]
  8. Brayton P. R., Colwell R. R. 1987; Fluorescent antibody staining method for enumeration of viable environmental Vibrio cholerae O1. Journal of Microbiological Methods 6:309–314
    [Google Scholar]
  9. Brayton P. R., Tamplin M. L., Huq A., Colwell R. R. 1987; Enumeration of Vibrio cholerae O1 in Bangladesh waters by fluorescent-antibody direct count. Applied and Environmental Microbiology 53:2862–2865
    [Google Scholar]
  10. Brill W. 1985; Safety concerns and genetic engineering in agriculture. Science 227:381–384
    [Google Scholar]
  11. Burman N. P. 1967; Developments in membrane filtration techniques - 2: adaptation to routine and special requirements. Proceedings of the Society for Water Treatment and Examination 1640–50
    [Google Scholar]
  12. Chantler S., McIllmurray M. B. 1988; Labelled antibody methods for detection and identification of microorganisms. Methods in Microbiology 19:273–332
    [Google Scholar]
  13. Chen K., Neimark H., Rumore P., Steinman C. R. 1989; Broad range DNA probes for detecting and amplifying eubacterial nucleic acids. FEMS Microbiology Letters 57:19–24
    [Google Scholar]
  14. Colwell R. R., Brayton P. R., Grimes D. J., Roszak D. R., Huq S. A., Palmer L. M. 1985; Viable but non-culturable Vibrio cholerae and related pathogens in the environment: implications for the release of genetically engineered microorganisms. Biotechnology 3:817–820
    [Google Scholar]
  15. Conway de Macario E., Wolin M. J., Macario A. J. L. 1982; Antibody analysis of relationships among methanogenic bacteria. Journal of Bacteriology 149:316–319
    [Google Scholar]
  16. Diels L., Mergeay M. 1990; DNA probe-mediated detection of resistant bacteria from soils highly polluted by heavy metals. Applied and Environmental Microbiology 56:1485–1491
    [Google Scholar]
  17. Drahos D. J., Hemming B. C., McPherson S. 1986; Tracking recombinant organisms in the environment: βgalactosidase as a selectable marker for fluorescent pseudomonads. Biotechnology 4:439–444
    [Google Scholar]
  18. Ferguson R. L., Buckley E. N., Palumbo A. V. 1984; Response of marine bacterioplankton to differential centrifugation and confinement. Applied and Environmental Microbiology 47:49–55
    [Google Scholar]
  19. Ford S. F., Olsen B. 1988; Methods for detecting genetically engineered microorganisms in the environment. Advances in Microbial Ecology 10:45–79
    [Google Scholar]
  20. Fredrickson J. K., Bezdicek D. F., Brickman F. J., Li S. W. 1988; Enumeration of Tn5 mutant bacteria in soil by using a most-probable-number DNA hybridization technique and antibiotic resistance. Applied and Environmental Microbiology 54:446–453
    [Google Scholar]
  21. Fry J. C. 1988; Determination of biomass. In Methods in Aquatic Bacteriology27–72 Austin B. Chichester: John Wiley;
    [Google Scholar]
  22. Fry J. C. 1990; Direct methods and biomass estimation. Methods in Microbiology 22:41–86
    [Google Scholar]
  23. Fry J. C., Humphrey N. C. 1978; Techniques for the study of bacteria epiphytic on aquatic macrophytes. In Techniques for the Study of Mixed Populations,1–29 Lovelock D. W., Davies R. London: Academic Press;
    [Google Scholar]
  24. Gardener S., Jones J. G. 1984; A new solidifying agent for culture media which liquefies on cooling. Journal of General Microbiology 130:731–733
    [Google Scholar]
  25. Gillett J. W., Levin S. A., Harwell M. A., Andow D. A., Alexander M., Stern A. M. 1984; Potential impacts of environmental release of biotechnology products: assessment, regulation and research needs. Ithaca, NY: Ecosystems Research Center, Cornell University;
    [Google Scholar]
  26. Giovannoni S. J., Delong E. F., Olsen G. J., Pace N. R. 1988; Phylogenetic group-specific oligonucleotide probes for the identification of single microbial cells. Journal of Bacteriology 170:720–726
    [Google Scholar]
  27. Giovannoni S. J., Britschgi T. B., Moyer C. L., Field K. G. 1990 Genetic diversity in Sargasso Sea bacterioplankton Nature; London: 34560–63
    [Google Scholar]
  28. Goulder R. 1987; Evaluation of the saturation approach to measurement of V max for glucose mineralization by epilithic freshwater bacteria. Letters in Applied Microbiology 4:29–32
    [Google Scholar]
  29. Grigorova R., Norris J. R. 1990; Techniques in Microbial Ecology. Methods in Microbiology 22 London: Academic Press;
    [Google Scholar]
  30. Hall G. H., Jones J. G., Pickup R. W., Simon B. M. 1990; Methods to study the bacterial ecology of freshwater environments. Methods in Microbiology 23:181–210
    [Google Scholar]
  31. Hames B. P., Higgins S. J. 1985 Nucleic Acid Hybridization: a Practical Approach Oxford: IRL Press;
    [Google Scholar]
  32. Hanahan D., Meselson M. 1980; Plasmid screening at high colony density. Gene 10:63–68
    [Google Scholar]
  33. Hazen T. C., Jimenez L. 1988; Enumeration and identification of bacteria from environmental samples using nucleic acid probes. Microbiological Sciences 5:340–343
    [Google Scholar]
  34. Herbert R. A. 1990; Methods for enumerating microorganisms and determining biomass in natural environments. Methods in Microbiology 19:1–40
    [Google Scholar]
  35. Hodgson A. L. M., Roberts W. P. 1983; DNA colony hybridization to identify Rhizobium strains. Journal of General Microbiology 129:207–212
    [Google Scholar]
  36. Holben W. E., Jansson J. K., Chelm B. K., Tiedje J. M. 1988; DNA probe method for the detection of specific microorganisms in the soil community. Applied and Environmental Microbiology 54:703–711
    [Google Scholar]
  37. Hopkins D. W., MacNaughton S. J., O’Donnell A. G. 1991a; Representative sampling of microorganisms from soil. Soil Biology and Biochemistry in the Press
    [Google Scholar]
  38. Hopkins D. W., MacNaughton S. J., O’Donnell A. G. 1991b; Evaluation of elutriation for sampling soil microorganisms. Soil Biology and Biochemistry in the Press
    [Google Scholar]
  39. Hoppe H.-G. 1978; Relationships between active bacteria and heterotrophic potential in the sea. Netherlands Journal of Sea Research 12:78–98
    [Google Scholar]
  40. Jain R. K., Sayler G. S., Wilson J. T., Houston L., Pacia D. 1987; Maintenance and stability of introduced genotypes in groundwater aquifer materials. Applied and Environmental Microbiology 53:996–1002
    [Google Scholar]
  41. Jain R. K., Burlage R. S., Sayler G. S. 1988; Methods for detecting recombinant DNA in the environment. Critical Reviews in Biotechnology 8:33–84
    [Google Scholar]
  42. Jefferson R. A. 1989; The GUS reporter gene system. Nature; London: 342835–837
    [Google Scholar]
  43. Jones J. G. 1970; Studies on freshwater bacteria: effect of medium composition on methods of estimation of bacterial populations. Journal of Applied Bacteriology 33:679–687
    [Google Scholar]
  44. Jones J. G. 1977; The effect of environmental factors on estimated viable and total populations of planktonic bacteria in lakes and experimental enclosures. Freshwater Biology 7:61–97
    [Google Scholar]
  45. Jones J. G., Jones H. E. 1986; Benthic filamentous bacteria. In Perspectives in Microbial EcologyProceedings of the 4th International Symposium on Microbial Ecology375–382 Megusar F., Ganter M. Ljubljana: Slovene Society for Microbiology;
    [Google Scholar]
  46. Kasper C. W., Tartera C. 1990; Methods for detecting pathogens in food and water. Methods in Microbiology 22:497–534
    [Google Scholar]
  47. Kogure K., Simidu U., Taga N. 1979; A tentative direct microscopic method for counting living marine bacteria. Canadian Journal of Microbiology 25:415–420
    [Google Scholar]
  48. Lanyi B. 1987; Classical and rapid identification methods for medically important bacteria. Methods in Microbiology 19:1–68
    [Google Scholar]
  49. MacDonald R. M. 1986; Sampling soil microfloras: dispersion of soil by ion exchange and extraction of specific microorganisms from suspension by elutriation. Soil Biology and Biochemistry 18:399–406
    [Google Scholar]
  50. Martensson A. M., Gustafsson J.-G., Ljunggren H. D. 1984; A modified highly sensitive enzyme-linked immunosorbent assay ELISA for Rhizobium meliloti strain identification. Journal of General Microbiology 130:247–253
    [Google Scholar]
  51. Mason J., Burns R. G. 1990; Production of a monoclonal antibody specific for a Flavobacterium species isolated from soil. FEMS Microbiology Letters 73:299–308
    [Google Scholar]
  52. Morgan J. A. W., Winstanley C., Pickup R. W., Jones J. G., Saunders J. R. 1989; Direct phenotypic and genotypic detection of a recombinant pseudomonad population in lake water. Applied and Environmental Microbiology 55:2537–2544
    [Google Scholar]
  53. Morgan J. A. W., Winstanley C., Pickup R. W., Saunders J. R. 1991; The rapid immunocapture of Pseudomonas putida cells from lakewater using bacterial flagella. Applied and Environmental Microbiology 57:503–509
    [Google Scholar]
  54. Ogram A., Sayler G. S., Barkay T. 1988; DNA extraction and purification from sediments. Journal of Microbiological Methods 7:57–66
    [Google Scholar]
  55. Pace N. R., Stahl D. A., Lane D. J., Olsen G. J. 1986; The analysis of natural microbial populations by ribosomal RNA sequences. Advances in Microbial Ecology 9:1–56
    [Google Scholar]
  56. Pettigrew C. A., Sayler G. S. 1986; The use of DNA:DNA colony hybridization in the rapid isolation of 4-chlorobiphenyl degradative bacterial phenotypes. Journal of Microbiological Methods 5:205–213
    [Google Scholar]
  57. Phillips A. P., Martin K. L. 1988; Limitations of flow cytometry for the specific detection of bacteria in mixed populations. Journal of Immunological Methods 106:109–117
    [Google Scholar]
  58. Pickup R. W., Saunders J. R. 1990; Detection of genetically engineered traits among bacteria in the environment. Trends in Biotechnology 8:329–334
    [Google Scholar]
  59. Pickup R. W., Simon B. M., Jones J. G., Saunders J. R., Carter J. K., Morgan J. A. W., Winstanley C., Raitt F. C. 1990; Survival of laboratory and freshwater bacteria carrying an extrachromosomal xylE gene in freshwater microcosms. In Bacterial Genetics in Natural Environments89–99 Fry J. C., Day M. J. London: Chapman Hall;
    [Google Scholar]
  60. Rattray E. A., Prosser J. I., Killham K., Glover L. A. 1990; Luminescence-based nonextractive technique for in situ detection of Escherichia coli in soil. Applied and Environmental Microbiology 56:3368–3374
    [Google Scholar]
  61. Reed W. M., Duggan P. R. 1978; Distribution of Methylomonas methanica and Methylosinus trichosporium in Cleveland Harbor as determined by an indirect fluorescent antibody-membrane filter technique. Applied and Environmental Microbiology 35:422–430
    [Google Scholar]
  62. Renwick A., Gareth D. 1985; A comparison of fluorescent ELISA and antibiotic resistance identification techniques for use in ecological experiments with Rhizobium trifolii . Journal of Applied Bacteriology 58:199–206
    [Google Scholar]
  63. Roszak D. B., Colwell R. R. 1987; Survival strategies of bacteria in the natural environment. Microbiological Reviews 51:365–379
    [Google Scholar]
  64. Saunders J. R., Saunders V. A. 1991; Molecular techniques for detecting and measuring the activity of genetically-manipulated bacteria released into the environment. In Monitoring Genetically-Manipulated Microorganisms in the Environment Edwards C. Milton Keynes: Open University Press in the Press;
    [Google Scholar]
  65. Saunders J. R., Morgan J. A. W., Winstanley C., Raitt F. C., Carter J. P., Pickup R. W., Jones J. G., Saunders V. A. 1990; Genetic approaches to the study of gene transfer in microbial communities. In Bacterial Genetics in Natural Environments,3–21 Fry J. C., Day M. J. London: Chapman Hall;
    [Google Scholar]
  66. Sayler G. S., Layton A. C. 1990; Environmental application of nucleic acid hybridization. Annual Review of Microbiology 44:625–648
    [Google Scholar]
  67. Sayler G. S., Shields M. S., Tedford E. T., Breen A., Hooper S. W., Sirotkin K. M., Davis J. W. 1985; Application of DNA : DNA colony hybridization to the detection of catabolic phenotypes in environmental samples. Applied and Environmental Microbiology 49:1295–1303
    [Google Scholar]
  68. Schmidt E. L. 1974; Quantitative autecological study of microorganisms in soil by immunofluorescence. Soil Science 118:67–76
    [Google Scholar]
  69. Schneider J., Rheinheimer G. 1988; Isolation methods. In Methods in Aquatic Bacteriology73–94 Austin B. Chichester: John Wiley;
    [Google Scholar]
  70. Shaw J. J., Kado C. I. 1986; Development of a Vibrio bioluminescence gene-set to monitor phytopathogenic bacteria during the ongoing disease process in a non-disruptive manner. Biotechnology 4:560–564
    [Google Scholar]
  71. Sommerville C., Knight I. T., Straube W. L., Colwell R. R. 1989; Simple rapid method for the direct isolation of nucleic acids from aquatic environments. Applied and Environmental Microbiology 55:548–554
    [Google Scholar]
  72. Steffan R. J., Atlas R. M. 1988; DNA amplification to enhance the detection of genetically engineered bacteria in environmental samples. Applied and Environmental Microbiology 54:2185–2191
    [Google Scholar]
  73. Steffan R. J., Atlas R. M. 1990; Solution hybridization assay for detecting genetically engineered microorganisms in environmental samples. Biotechniques 8:316–318
    [Google Scholar]
  74. Steffan R. J., Goksoyr J., Asim K. B., Atlas R. M. 1988; Recovery of DNA from soil and sediments. Applied and Environmental Microbiology 54:2908–2915
    [Google Scholar]
  75. Steffan R. J., Breen A., Atlas R. M., Sayler G. S. 1989; Application of gene probe methods for monitoring microbial populations in freshwater ecosystems. Canadian Journal of Microbiology 35:681–685
    [Google Scholar]
  76. Stewart G. S. A. B. 1990; In vivo bioluminescence: new potentials for microbiology. Letters in Applied Microbiology 10:1–8
    [Google Scholar]
  77. Stotzky G. 1985; Mechanisms of adhesion to clays, with special reference to soil systems. In Bacterial Adhesion : Mechanisms and Physiological Significance,195–253 Savage D. C., Fletcher M. M. New York: Plenum;
    [Google Scholar]
  78. Sussman M., Collins C. H., Skinner F. A., Stewart-Tull D. E. 1988 The Release of Genetically-engineered Microorganisms London: Academic Press;
    [Google Scholar]
  79. Volsch A., Nader W. F., Geiss H. K., Nebe G., Birr C. 1990; Detection and analysis of two serotypes of ammonia-oxidizing bacteria in sewage plants by flow cytometry. Applied and Environmental Microbiology 56:2430–2435
    [Google Scholar]
  80. Ward B. B., Carlucci A. F. 1985; Marine ammonia and nitrite oxidising bacteria: serological diversity determined by immunofluorescence in culture and in the environment. Applied and Environmental Microbiology 50:194–201
    [Google Scholar]
  81. Ward D. B., Weller R., Bateson M. M. 1990; 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature; London: 34563–65
    [Google Scholar]
  82. Winstanley C., Morgan J. A. W., Pickup R. W., Jones J. G., Saunders J. R. 1989; Differential regulation of lambda p L and p R by a cI repressor in a broad host range thermoregulated plasmid marker system. Applied and Environmental Microbiology 55:771–777
    [Google Scholar]
  83. Wipat A., Wellington E. M., Saunders V. A. 1991; Detection systems for streptomyces. In Genetic Interactions Between Microorganisms in Natural Environments Wellington E. M., van Elsas J. D. Manchester: Manchester University Press in the Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-5-1009
Loading
/content/journal/micro/10.1099/00221287-137-5-1009
Loading

Data & Media loading...

Most cited Most Cited RSS feed