1887

Abstract

Summary: The fumarase gene (-like) was cloned and sequenced, and a deletion mutant was constructed. This mutant had a Nod Fix phenotype in symbiosis with the host plant, soybean, and growth in minimal medium with fumarate as sole carbon source was also not affected. The cloned gene fully complemented an Fum mutant, strain JH400, for growth in minimal medium with fumarate. The predicted amino acid sequence of the FumC protein showed strong similarity to the FumC protein, CitG protein, Fum1 protein, and the mammalian fumarases. The FumC protein accounted for about 40% of the total fumarase activity in aerobically grown cells. The remaining 60% was ascribed to a temperature-labile fumarase. These data suggest that possesses two different fumarase isoenzymes, one of which is encoded by . Besides , which has three fumarases, is thus the second bacterium for which there is genetic evidence for the existence of more than one fumarase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-4-991
1991-04-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/4/mic-137-4-991.html?itemId=/content/journal/micro/10.1099/00221287-137-4-991&mimeType=html&fmt=ahah

References

  1. Bell P. J., Andrews S. C., Sivak M. N., Guest J. R. 1989; Nucleotide sequence of the FNR-regulated fumarase gene (fumB) of Escherichia coli K-12. Journal of Bacteriology 171:3494–3503
    [Google Scholar]
  2. Bergersen F. J., Turner G. L. 1967; Nitrogen fixation by the bacteroid fraction of breis of soybean root nodules.. Biochimica et Biophysica Acta 141:507–515
    [Google Scholar]
  3. Bolton E., Higgisson B., Harrington A., O’Gara F. 1986; Dicarboxylic acid transport in Rhizobium meliloti: isolation of mutants and cloning of dicarboxylic acid transport genes.. Archives of Microbiology 144:142–146
    [Google Scholar]
  4. Boyer H. W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli . Journal of Molecular Biology 41:459–472
    [Google Scholar]
  5. Bradford M. M. 1976; A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye-binding.. Analytical Biochemistry 72:248–253
    [Google Scholar]
  6. Cole M. A., Elkan G. H. 1973; Transmissible resistance to penicillin G, neomycin, and chloramphenicol in Rhizobium japoni-cum . Journal of Bacteriology 114:248–253
    [Google Scholar]
  7. Daniel A. M., Appleby C. A. 1972; Anaerobic nitrate, symbiotic and aerobic growth of Rhizobium japonicum: effects on cytochrome P450, other hemoproteins, nitrate and nitrite reductases.. Biochimica et Biophysica Acta 275:347–354
    [Google Scholar]
  8. Ditta G. S., Stanfield S., Corbin D., Helinski D. R. 1980; Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti . Proceedings of the National Academy of Sciences of the United States of America 77:7347–7351
    [Google Scholar]
  9. Duncan M. J., Fraenkel D. G. 1979; α-Ketoglutarate dehydro-genase mutant of Rhizobium meliloti . Journal of Bacteriology 37:415–419
    [Google Scholar]
  10. Ebeling S. 1990 Entdeckung der nifN-, nifS- und frxA-Gene in Bradyrhizobium japonicum sowie Charakterisierung einer symbiontisch essentiellen RNA Doctoral Thesis ETH No. 9108, Swiss Federal Institute of Technology; Zurich, Switzerland:
    [Google Scholar]
  11. Engelke Th., Jording D., Kapp D., Pühler A. 1989; Identification and sequence analysis of the Rhizobium meliloti dctA gene encoding the C4-dicarboxylate carrier.. Journal of Bacteriology 171:5551–5560
    [Google Scholar]
  12. Feinberg A. P., Vogelstein B. 1984; Addendum. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity.. Analytical Biochemistry 137:266–267
    [Google Scholar]
  13. Figurski D. H., Helinski D. L. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans . Proceedings of the National Academy of the United States of America 76:1648–1652
    [Google Scholar]
  14. Finan T. M., Wood J. M., Jordan D. C. 1983; Symbiotic properties of C4-dicarboxylic acid transport mutants of Rhizobium leguminosarum . Journal of Bacteriology 154:1403–1413
    [Google Scholar]
  15. Fürste J. P., Pansegrau W., Frank A., Blöcker H., Scholz P., Bagdasarian M. 1986; Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector.. Gene 48:119–131
    [Google Scholar]
  16. Gardiol A., Arias A., Cerveñansky C., Martinez-Drets G. 1982; Succinate dehydrogenase mutant of Rhizobium meliloti . Journal of Bacteriology 151:1621–1623
    [Google Scholar]
  17. Hahn M., Hennecke H. 1984; Localized mutagenesis in Rhizobium japonicum . Molecular and General Genetics 193:46–52
    [Google Scholar]
  18. Henson J. M., Blake N. K., Marek L. 1987; The isolation of fumB mutants ofEscherichia coli . Journal of General Microbiology 133:2631–2638
    [Google Scholar]
  19. Hill R. L., Bradshaw R. A. 1969; Fumarase.. Methods in Enzymology 13:91–99
    [Google Scholar]
  20. Humbeck C., Werner D. 1988; Delayed nodule development in a succinate transport Tn5 mutant of Bradyrhizobium japonicum . Nitrogen Fixation: Hundred Years After559 Bothe H., de Bruijn F. J., Newton W. E. New York: Gustav Fischer;
    [Google Scholar]
  21. Karr D. B., Waters J. K., Susuki F., Emerich D. W. 1984; Enzymes of the poly-β-hydroxybutyrate and citric acid cycles of Rhizobium japonicum bacteroids.. Plant Physiology 75:1158–1162
    [Google Scholar]
  22. Kinsella T. R., Doonan S. 1986; Nucleotide sequence of a cDNA coding for mitochondrial fumarase from human liver.. Bioscience Reports 6:921–929
    [Google Scholar]
  23. Kurz W. G. W., LaRue T. A. 1977; Citric acid cycle enzymes and nitrogenase in nodules of Pisum sativum . Canadian Journal of Microbiology 23:1197–1200
    [Google Scholar]
  24. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. McKay I. A., Dilworth M. J., Glenn A. R. 1989; Chemostat studies of carbon catabolism in Rhizobium leguminosarum MNF3841. Archives of Microbiology 152:606–609
    [Google Scholar]
  26. Messing J. 1983; New Ml3 vectors for cloning.. Methods in Enzymology 101:20–78
    [Google Scholar]
  27. Miles J. S., Guest J. R. 1984; Complete nucleotide sequence of the fumarase gene fumA of Escherichia coli . Nucleic Acids Research 12:3631–3642
    [Google Scholar]
  28. Miles J. S., Guest J. R. 1985; Complete nucleotide sequence of the fumarase gene (citG) of Bacillus subtilis 168. Nucleic Acids Research 13:131–140
    [Google Scholar]
  29. Miller J. H. 1972 Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Moir A., Feavers I. M., Guest J. R. 1984; Characterization of the fumarase gene of Bacillus subtilis 168 cloned and expressed in Escherichia coli K12. Journal of General Microbiology 130:3009–3017
    [Google Scholar]
  31. Norrander J., Kempe T., Messing J. 1983; Construction of improved Ml3 vectors using oligonucleotide-directed mutagenesis.. Gene 26:101–106
    [Google Scholar]
  32. Oda Y., Suzuki S., Katsuki H. 1987; Physiological roles of two enzymes with fumarase activity in two pseudomonads.. Biochemistry International 14:871–878
    [Google Scholar]
  33. O’Hare M. C., Doonan S. 1985; Purification and structural comparisons of the cytosolic and mitochondrial isoenzymes of fumarase from pig liver.. Biochimica et Biophysica Acta 827:127–134
    [Google Scholar]
  34. Regensburger B. 1986 Untersuchungen zur Regulation von Symbiose und Stickstoff-Fixierung in Bradyrhizobium japonicum: Charakterisierung on drei neuen Regulationsgenen Doctoral Thesis ETH No. 8129, Swiss Federal Institute of Technology; Zurich, Switzerland:
    [Google Scholar]
  35. Regensburger B., Hennecke H. 1983; RNA polymerase from Rhizobium japonicum . Archives of Microbiology 135:103–109
    [Google Scholar]
  36. Regensburger B., Hennecke H. 1984; Free-living and symbiotic nitrogen fixing ability of Rhizobium japonicum is unaffected by rifampicin resistance mutations.. FEMS Microbiology Letters 21:77–81
    [Google Scholar]
  37. Regensburger B., Meyer L., Filser M., Weber J., Studer D., Lamb J. W., Fischer M.-H., Hahn M., Hennecke H. 1986; Bradyrhizobium japonicum mutants defective in root-nodule bacteroid development and nitrogen fixation.. Archives of Microbiology 144:355–366
    [Google Scholar]
  38. Robertson J. G., Taylor M. P. 1973; Acid and alkaline invertases in roots and nodules of Lupinus angustifolius infected with Rhizobium lupini . Planta 112:1–6
    [Google Scholar]
  39. Ronson C. W., Lyttleton P., Robertson J. G. 1981; C4-dicarboxylate transport mutants of Rhizobium trifolii form ineffective nodules on Trifolium repens . Proceedings of the National Academy of Sciences of the United States of America 78:4284–4288
    [Google Scholar]
  40. Sacchettini J. C., Fraizier M. W., Chiara D. C., Banazak L. J., Grant G. A. 1988; Amino acid sequence of porcine heart fumarase.. Biochemical and Biophysical Research Communications 153:435–440
    [Google Scholar]
  41. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors.. Proceedings of the National Academy of Sciences of the United States of America 83:765–773
    [Google Scholar]
  42. Shibata H., Gardiner W. E., Schwartzbach S. D. 1985; Purification, characterization, and immunological properties of fumarase from Euglena gracilis var.. bacillaris. Journal of Bacteriology 164:762–768
    [Google Scholar]
  43. Shine J., Dalgarno L. 1975; Determinants of cistron specificity in bacterial ribosomes.. Nature, London 254:34–38
    [Google Scholar]
  44. Simon A., Priefer U., Puhler A. 1983; Vector plasmids for in vivo and in vitro manipulation of Gram-negative bacteria. Molecular Genetics of the Bacteria-Plant Interaction98–106 Puhler A. Berlin, Heidelberg, New York: Springer;
    [Google Scholar]
  45. Stovall I., Cole M. 1978; Organic acid metabolism by isolated Rhizobium japonicum bacteroids.. Plant Physiology 61:787–790
    [Google Scholar]
  46. Suzuki T., Sato M., Yoshida T., Tuboi S. 1989; Rat liver mitochondrial and cytosolic fumarases with identical amino acid sequences are encoded from a single gene.. Journal of Biological Chemistry 264:2581–2586
    [Google Scholar]
  47. Takagi J. S., Ida N., Tokushige M., Sakamoto H., Shimura Y. 1985; Cloning and nucleotide sequence of the aspartase gene of Escherichia coli W.. Nucleic Acids Research 13:2063–2073
    [Google Scholar]
  48. Takagi J. S., Tokushige M., Shimura Y., Kanehisa M. 1986a; l-Aspartate ammonia-lyase and fumarate hydratase share extensive sequence homology.. Biochemical and Biophysical Research Communi-cations 132:568–572
    [Google Scholar]
  49. Takagi J. S., Tokushige M., Shimura Y. 1986b; Cloning and nucleotide sequence of the aspartase gene of Pseudomonas fluores-cens . Journal of Biochemistry 100:697–705
    [Google Scholar]
  50. Turner G. L., Gibson A. H. 1980; Measurement of nitrogen fixation by indirect means. Methods for Evaluating Biological Nitrogen Fixation111–138 Bergersen F. J. Chichester: John Wiley;
    [Google Scholar]
  51. Woods S. A., Guest J. R. 1987; Differential roles of the Escherichia coli fumarases and fnr-dependent expression of fumarase B and aspartase.. FEMS Microbiology Letters 48:219–224
    [Google Scholar]
  52. Woods S. A., Miles J. S., Roberts R. E., Guest J. R. 1986; Nucleotide sequences of the fumarase (fumC) and aspartase (aspA) genes of Escherichia coli K.12.. Biochemical Journal 237:547–557
    [Google Scholar]
  53. Woods S. A., Miles J. S., Guest J. R. 1988a; Sequence homologies between argininosuccinase, aspartase and fumarase: a family of structurally-related enzymes.. FEMS Microbiology Letters 51:181–186
    [Google Scholar]
  54. Woods S. A., Schwartzbach S. D., Guest J. R. 1988b; Two biochemically distinct classes of fumarase in Escherichia coli . Biochimica et Biophysica Acta 954:14–26
    [Google Scholar]
  55. Wu M., Tzagoloff A. 1987; Mitochondrial and cytoplasmic fumarases in Saccharomyces cerevisiae are encoded by a single nuclear gene FUM1 . Journal of Biological Chemistry 262:12275–12282
    [Google Scholar]
  56. Yumoto N., Tokushige M. 1988; Characterization of multiple fumarase proteins in Escherichia coli . Biochemical and Biophysical Research Communications 153:1236–1243
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-4-991
Loading
/content/journal/micro/10.1099/00221287-137-4-991
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error