1887

Abstract

Summary: Thermosensitive mutants of deficient in peptidoglycan synthesis were screened for mutations in the -diaminopimelate (-Apm) metabolic pathway. Mutations in two out of five relevant linkage groups, and , were shown to induce, at the restrictive temperature, a deficiency in -Apm synthesis and accumulation of UDP-MurNAc-dipeptide. Group is heterogeneous; it encompasses mutations that confer deficiency in the deacylation of -acetyl--Apm and accumulation of this precursor. Accordingly, these mutations are assigned to the previously identified locus . Mutations in linkage group entail a thermosensitive aspartokinase I. Therefore, they are most likely to affect the structural gene of this enzyme, which we propose to designate . Mutation , previously reported to affect the pyruvate carboxylase, was shown to confer a deficiency in aspartokinase I, not in the carboxylase, and to belong to the locus. is closely linked to , the putative gene of dipicolinate synthase. In conclusion, mutations affecting only two out of eight steps known to be involved in -Apm synthesis were uncovered in a large collection of thermosensitive mutants obtained by indirect selection. We propose that this surprisingly restricted distribution of the thermosensitive mutations isolated so far is due to the existence, in each step of the pathway, of isoenzymes encoded by separate genes. The biological role of different aspartokinases was investigated with mutants deficient in and genes. Growth characteristics of these mutants in the presence of various combinations of aspartate family amino acids allow a reassessment of a metabolic channel hypothesis, i.e. the proposed existence of multienzyme complexes, each specific for a given end product.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-4-951
1991-04-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/4/mic-137-4-951.html?itemId=/content/journal/micro/10.1099/00221287-137-4-951&mimeType=html&fmt=ahah

References

  1. Aleksieva Z. M., Shevtchenko T. N., Malyuta S. S. 1985; A study of lysine operon organization in Bacillus subtilis . Biopolimery i Kletka 1156–158
    [Google Scholar]
  2. Balassa G., Milhaud P., Raulet E., Silva M. T., Sousa J. C. F. 1979; A Bacillus subtilis mutant requiring dipicolinic acid for the development of heat-resistant spores. Journal of General Microbiology 110365–379
    [Google Scholar]
  3. Bates C. J., Pasternak C. A. 1965; The incorporation of labelled amino sugars by Bacillus subtilis . Biochemical Journal 96155–158
    [Google Scholar]
  4. Brandt C., Karamata D. 1987; Thermosensitive Bacillus subtilis mutants which lyse at the non-permissive temperature. Journal of General Microbiology 1331159–1170
    [Google Scholar]
  5. Buxton R. S. 1978; A heat-sensitive lysis mutant of Bacillus subtilis 168 with a low activity of pyruvate carboxylase. Journal of General Microbiology idS175–185
    [Google Scholar]
  6. Buxton R. S., Ward J. B. 1980; Heat-sensitive lysis mutants of Bacillus subtilis 168 blocked at the three different stages of peptidoglycan synthesis. Journal of General Microbiology 120283–293
    [Google Scholar]
  7. Chen N.-Y, & Paulus H. 1988; Mechanism of expression of the overlapping genes of Bacillus subtilis aspartokinase II. Journal of Biological Chemistry 2639526–9532
    [Google Scholar]
  8. Chen N.-Y., Hu F.-M, Paulus H. 1987; Nucleotide sequence of the overlapping genes for the subunits of Bacillus subtilis aspartokinase II and their control regions. Journal of Biological Chemistry 2628787–8798
    [Google Scholar]
  9. Chen N.-Y., Zhang J.-J., Paulus H. 1989; Chromosomal location of the Bacillus subtilis aspartokinase II gene and nucleotide sequence of the adjacent genes homologous to uvrC and trx of Escherichia coli . Journal of General Microbiology 1352931–2940
    [Google Scholar]
  10. Cohen G. N., Saint-Girons I. 1987; Biosynthesis of threonine, lysine and methionine. Escherichia coli and Salmonella typhi-murium, Cellular and Molecular Biology 1429–444 Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Diesterhaft M. D., Freese E. 1973; Role of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and malic enzymes during growth and sporulation of Bacillus subtilis . Journal of Biological Chemistry 2486062–6070
    [Google Scholar]
  12. Dubnau D., Goldthwaite C., Smith I., Marmur. J. 1967; Genetic mapping in Bacillus subtilis . Journal of Molecular Biology 27163–185
    [Google Scholar]
  13. Ferrari F. A., Land D., Ferrari E., Hoch J. A. 1982; Molecular cloning of the spoOB sporulation locus in bacteriophage lambda. Journal of Bacteriology 152809–814
    [Google Scholar]
  14. Fisher S. H., Magasanik B. 1984; Synthesis of oxaloacetate in Bacillus subtilis mutants lacking the 2-ketoglutarate dehydrogenase enzymatic complex. Journal of Bacteriology 15855–62
    [Google Scholar]
  15. Gianni M., Galizzi A. 1986; Isolation of genes preferentially expressed during Bacillus subtilis spore outgrowth. Journal of Bacteriology 165123–132
    [Google Scholar]
  16. Gilvarg C. 1959; N-succinyl-L-diaminopimelic acid. Journal of Biological Chemistry 2342955–2959
    [Google Scholar]
  17. Good C. M., Tipper D. J. 1972; Conditional mutants of Staphylococcus aureus defective in cell wall precursor synthesis. Journal of Bacteriology 111231–241
    [Google Scholar]
  18. Graves L. M., Switzer R. L. 1990; Aspartokinase III, a new isozyme in Bacillus subtilis 168. Journal of Bacteriology 172218–223
    [Google Scholar]
  19. Hampton M. L., McCormick N. C., Behforouz N. C., Freese E. 1971; Regulation of two aspartokinases in Bacillus subtilis . Journal of Bacteriology 1081129–1134
    [Google Scholar]
  20. Hlggens C. E., Kastner R. E. 1971; Streptomyces clavuligerus sp. nov., a β-lactam antibiotic producer. International Journal of Systematic Bacteriology 21326–331
    [Google Scholar]
  21. Hoch J. A., Mathews J. 1972; Genetic studies in Bacillus subtilis . Spores V113–116 Halvorson H. O., Hanson R., Campbell L. L. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. ITO M., Aida K., Uemura T. 1969; Studies on the bacterial formation of a peptide antibiotic, colistin. Part III. On the biosynthetic pathway of a.y-diaminobutyric acid and relationship between colistin formation and amino acids metabolism in Bacillus colistinus Koyama. Agricultural and Biological Chemistry 33949–958
    [Google Scholar]
  23. Karamata D., Gross J. D. 1970; Isolation and genetic analysis of temperature-sensitive mutants of Bacillus subtilis defective in DNA synthesis. Molecular and General Genetics 108277–287
    [Google Scholar]
  24. Kirby W. M. M., Burnell J. M. 1954; Effect of combinations of antibiotics on lysis of Staphylococcus aureus by penicillin. Journal of Bacteriology 6750–52
    [Google Scholar]
  25. Layne E. 1957; Spectrophotometric and turbidimetric methods for measuring proteins. Methods in Enzymology 3447–454
    [Google Scholar]
  26. Lu Y., Chen N.-Y, Paulus H. 1991; Identification of aecA mutations in Bacillus subtilis as nucleotide substitutions in the untranslated leader region of the aspartokinase II operon. Journal of General Microbiology 137
    [Google Scholar]
  27. Mauel C., Karamata D. 1984; Characterization of proteins induced by mitomycin C treatment of Bacillus subtilis . Journal of Virology 49806–812
    [Google Scholar]
  28. Mauel C., Young M., Margot P., Karamata D. 1989; The essential nature of teichoic acids in Bacillus subtilis as revealed by insertional mutagenesis. Molecular and General Genetics 215388–394
    [Google Scholar]
  29. Mendelovitz S., Aharonowitz Y. 1982; Regulation of cepha-mycin C synthesis, aspartokinase, dihydrodipicolinic acid synthe-tase, and homoserine dehydrogenase by aspartic acid family amino acids in Streptomyces clavuligerus . Antimicrobial Agents and Chemotherapy 2174–84
    [Google Scholar]
  30. Mengin-Lecreulx D., Flouret B., Van Heijenoort J. 1982; Cytoplasmic steps of peptidoglycan synthesis in Escherichia coli . Journal of Bacteriology 1511109–1117
    [Google Scholar]
  31. Mengin-Lecreulx D., Flouret B., Van Heijenoort J. 1983; Pool levels of UDP-N-acetylglucosamine and UDP-7V-acetylglucos-amine-enolpyruvate in Escherichia coli and correlation with peptidoglycan synthesis. Journal of Bacteriology 1541284–1290
    [Google Scholar]
  32. Meynell G. G., Meynell E. 1970; Genetic technique. Theory and Practice in Experimental Bacteriology256–294 Cambridge: Cambridge University Press;
    [Google Scholar]
  33. Mueller J. P., Taber H. W. 1989; Isolation and sequence of ctaA, a gene required for cytochrome aa 3 biosynthesis and sporulation in Bacillus subtilis . Journal of Bacteriology 1714967–4978
    [Google Scholar]
  34. Paulus H., Gray E. 1967; Multivalent feedback inhibition of aspartokinase in Bacillus polymyxa. I. Kinetic studies. Journal of Biological Chemistry 2424980–4986
    [Google Scholar]
  35. Petricek M., Rutberg L., Hederstedt L. 1989; The structural gene for aspartokinase II in Bacillus subtilis is closely linked to the sdh operon. FEMS Microbiology Letters 6185–87
    [Google Scholar]
  36. Piggot P. J. 1989; Revised genetic map of Bacillus subtilis . Regulation of Procaryotic Development1–41 Smith I., Slepecky R. A., Setlow P. Washington, DC.: American Society for Microbiology;
    [Google Scholar]
  37. Piggot P. J., Hoch J. A. 1985; Revised genetic linkage map of Bacillus subtilis . Microbiological Reviews 49158–179
    [Google Scholar]
  38. Pooley H. M., Abellan F.-X., Karamata D. 1991; A conditional-lethal mutant of Bacillus subtilis 168 with a thermosensi-tive glycerol-3-phosphate cytidylyltransferase, an enzyme specific for the synthesis of the major wall teichoic acid. Journal of General Microbiology 137921–928
    [Google Scholar]
  39. Rosner A., Paulus H. 1971; Regulation of aspartokinase in Bacillus subtilis. The separation and properties of the two isofunc-tional enzymes. Journal of Biological Chemistry 2462965–2971
    [Google Scholar]
  40. Ruhland L. E., Work E., Denman R. F., Hoare D. S. 1955; The behavior of the isomers of α,ε-diaminopimelic acid on paper chromatograms. Journal of the American Chemical Society 774844–4846
    [Google Scholar]
  41. Sargent M. G. 1973; Synchronous cultures of Bacillus subtilis obtained by filtration with glass fiber filters. Journal of Bacteriology 116736–740
    [Google Scholar]
  42. Schaeffer P., Millet J., Aubert J. P. 1965; Catabolic repression of bacterial sporulation. Proceedings of the National Academy of Sciences of the United States of America 54704–711
    [Google Scholar]
  43. Shevtchenko T. N., Okunev O. V., Aleksieva Z. M., Malyuta S. S. 1984; Expression of genes for biosynthesis of lysine from Bacillus subtilis in cells of Escherichia coli . Citologia i Genetika 158–60
    [Google Scholar]
  44. Shevtchenko T. N., Timashova E. O., Aleksieva Z. M., Rodnin N. V., Malyuta S. S. 1988; Bacillus subtilis mutants auxotrophic for lysine. Molekularnaya Genetika, Mikrobiologiya i Virusologiya 633–37
    [Google Scholar]
  45. Sundharadas G., Gilvarg C. 1967; Biosynthesis of α,ε-diaminopimelic acid in Bacillus megaterium . Journal of Biological Chemistry 2423983–3984
    [Google Scholar]
  46. Szabo I., Penyige A., Barabas G., Szabo G., Dinya Z. 1989; Production of a streptomycine-Park nucleotide complex by Streptomyces griseus . Antimicrobial Agents and Chemotherapy 3358–62
    [Google Scholar]
  47. Ward J. B. 1974; The synthesis of peptidoglycan in an autolysin-deficient mutant of Bacillus licheniformis NCTC 6346 and the effect of /Mactam antibiotics bacitracin and vancomycin. Biochemical Journal 141227–241
    [Google Scholar]
  48. Ward J. B. 1975; Peptidoglycan synthesis in L-phase variants of Bacillus licheniformis and Bacillus subtilis . Journal of Bacteriology 124668–678
    [Google Scholar]
  49. Work E. 1971; Cell walls. Methods in Microbiology 5A361–418
    [Google Scholar]
  50. Zeigler D. R. 1990; Bacillus subtilis 168. Genetic Maps2.28–2.53 O’Brien S. J. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  51. Zhang J. J., Paulus H. 1990; Desensitization of Bacillus subtilis aspartokinase I to allosteric inhibition by meso-diaminopimelate allows aspartokinase I to function in amino acid biosynthesis during exponential growth. Journal of Bacteriology 1724690–4693
    [Google Scholar]
  52. Zhang J. J., Hu F.-M., Chen N.-Y., Paulus H. 1990; Comparison of the three aspartokinase isozymes in Bacillus subtilis Marburg and 168. Journal of Bacteriology 172701–708
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-4-951
Loading
/content/journal/micro/10.1099/00221287-137-4-951
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error