Genes concerned with synthesis of poly(glycerol phosphate), the essential teichoic acid in strain 168, are organized in two divergent transcription units Free

Abstract

Summary: Insertional mutagenesis has revealed that a 22 kbp segment from the region of the 168 chromosome (310° on the genetic map) contains at least six independent transcription units, all apparently devoted to production of cell envelope components. Genes concerned with synthesis of poly(glycerol phosphate), poly(groP), an essential cell wall polymer in 168, are organized in two divergently transcribed operons denoted and . Nucleotide sequence analysis indicates that three of these six genes encode extremely basic polypeptides. The deduced products of the operon may be involved in poly(groP) assembly and export, whereas those of the operon, which are very hydrophilic, are more likely to be implicated in poly(groP) precursor biosynthesis. The first gene of the operon encodes glycerol-3-phosphate cytidylyltransferase ( Pooley ., 1991 , 137, 921–928) and its deduced product has significant homology with cholinephosphate cytidylyltransferase from yeast. There is also substantial homology between the deduced products of in the operon and in the operon.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-4-929
1991-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/4/mic-137-4-929.html?itemId=/content/journal/micro/10.1099/00221287-137-4-929&mimeType=html&fmt=ahah

References

  1. Baddiley J. 1970; Structure, biosynthesis and function of teichoic acids. Accounts of Chemical Research 398–105
    [Google Scholar]
  2. Beck C. F., Warren R. A. J. 1988; Divergent promoters, a common form of gene organization. Microbiological Reviews 52318–326
    [Google Scholar]
  3. Birnboim H. C. 1983; A rapid alkaline method for the isolation of plasmid DNA. Methods in Enzymology 100243–255
    [Google Scholar]
  4. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 71513–1523
    [Google Scholar]
  5. Bohannon D. E., Sonenshein A. L. 1989; Positive regulation of glutamate biosynthesis in Bacillus subtilis . Journal of Bacteriology 1714718–4727
    [Google Scholar]
  6. Boylan R. J., Mendelson N. H., Brooks D., Young F. E. 1972; Regulation of the bacterial cell wall: analysis of a mutant of Bacillus subtilis defective in biosynthesis of teichoic acids. Journal of Bacteriology 110281–290
    [Google Scholar]
  7. Briehl M., Pooley H. M., Karamata D. 1989; Mutants of Bacillus subtilis thermosensitive for growth and wall teichoic acid synthesis. Journal of General Microbiology 1351325–1334
    [Google Scholar]
  8. Capaldi R. A. 1982; Structure of intrinsic membrane proteins. Trends in Biochemical Sciences 7292–295
    [Google Scholar]
  9. Chambers S. P., Prior S. E., Barstow D. A., Minton N. P. 1988; The pMTL m’c-cloning vectors. I. Improved polylinker region to facilitate the use of sonicated DNA for nucleotide sequencing. Gene 68139–149
    [Google Scholar]
  10. Chung C. T., Miller R. H. 1988; A rapid and convenient method for the preparation and storage of competent bacterial cells. Nucleic Acids Research 163580
    [Google Scholar]
  11. Collins J. F., Coulson A. F. W., Lyall A. 1988; The significance of protein sequence similarities. CABIOS 467–71
    [Google Scholar]
  12. Coulson A. F. W., Collins J. F., Lyall A. 1987; Protein and nucleic acid sequence database searching: a suitable case for parallel processing. Computer Journal 30420–424
    [Google Scholar]
  13. Dayhoff M. O., Schwartz R. M., Orcutt B. C. 1978; A model of evolutionary change in proteins. Atlas of Protein Sequence and Structure 53345–353 Dayhoff M. O. Washington, DC: NBRF;
    [Google Scholar]
  14. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12387–395
    [Google Scholar]
  15. Ellwood D. C., Tempest D. W. 1972; Effect of environment on bacterial wall content and composition. Advances in Microbial Physiology 783–117
    [Google Scholar]
  16. Estrela A.-I., Pooley H. M., De Lencastre H., Karamata D. 1991; Genetic and biochemical characterization of Bacillus subtilis 168 mutants specifically blocked in the synthesis of the teichoic acid, poly(3-0-/i-D-glucopyranosyl-A/-acetylgalactosamine 1-phosphate); gneA, a new locus, is associated with UDP-A/-acetylglucos- amine 4-epimerase activity. Journal of General Microbiology 137943–950
    [Google Scholar]
  17. Ferrari F. A., Nguyen A., Lang D., Hoch J. A. 1983; Construction and properties of an integrable plasmid for Bacillus subtilis . Journal of Bacteriology 1541513–1515
    [Google Scholar]
  18. Gilson E., Alloing G., Schmidt T., Claverys J.-P., Dudler R., Hofnung M. 1988; Evidence for high affinity binding-protein dependent transport systems in Gram-positive bacteria and in Mycoplasma . EM BO Journal 73971–3974
    [Google Scholar]
  19. Grossberger D. 1987; Minipreps of DNA from bacteriophage lambda. Nucleic Acids Research 156737
    [Google Scholar]
  20. Henner D. J., Yang M., Ferrari E. 1988; Localization of Bacillus subtilis sacU(Hy) mutations to two linked genes with similarities to the conserved procaryotic family of two-component signalling system. Journal of Bacteriology 1705102–5109
    [Google Scholar]
  21. Honeyman A. L., Stewart G. C. 1988; Identification of the protein encoded by rodC, a cell division gene from Bacillus subtilis . Molecular Microbiology 2735–741
    [Google Scholar]
  22. Honeyman A. L., Stewart G. C. 1989; The nucleotide sequence of the rodC operon in Bacillus subtilis . Molecular Microbiology 31257–1268
    [Google Scholar]
  23. Johnson W. C., Moran C. P. Jr, Losick R. 1983; Two RNA polymerase σ factors from Bacillus subtilis discriminate between overlapping promoters for a developmentally regulated gene. Nature London: 302800–804
    [Google Scholar]
  24. Karamata D., Gross J. 1970; Isolation and genetic analysis of temperature sensitive mutants of Bacillus subtilis defective in DNA synthesis. Molecular and General Genetics 108277–287
    [Google Scholar]
  25. Karamata D., McConnell M., Rogers H. J. 1972; Mapping of rod mutants of Bacillus subtilis . Journal of Bacteriology 11173–79
    [Google Scholar]
  26. Karamata D., Pooley H. M., Monod M. 1987; Expression of heterologous genes for wall teichoic acids in Bacillus subtilis 168. Molecular and General Genetics 20773–81
    [Google Scholar]
  27. Kunst F., Debarbouille M., Msadek T., Young M., Mauel C., Karamata D., Klier A., Rapoport G., Dedonder R. 1988; Deduced polypeptides encoded by the Bacillus subtilis sacU share homology with two-component sensor-regulator systems. Journal of Bacteriology 1705093–5101
    [Google Scholar]
  28. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157105–132
    [Google Scholar]
  29. Makino K., Shinagawa H., Amemura M., Nakata A. 1986; Nucleotide sequence of the phoB gene, the positive regulatory gene for the phosphate regulon of Escherichia coli . Journal of Molecular Biology 19037–44
    [Google Scholar]
  30. Makino K., Shinagawa H., Amemura M., Kimura S., Nakata A., Ishihama A. 1988; Regulation of the phosphate regulon of Escherichia coli. Activation of pstS transcription by PhoB protein in vitro . Journal of Molecular Biology 20385–95
    [Google Scholar]
  31. Malke H., Roe B., Ferretti J. J. 1985; Nucleotide sequence of the streptokinase gene from Streptococcus equisimilis H46A. Gene 34357–362
    [Google Scholar]
  32. Mauël C., Young M., Margot Ph., Karamata D. 1989; The essential nature of teichoic acids in Bacillus subtilis as revealed by insertional mutagenesis. Molecular and General Genetics 215388–394
    [Google Scholar]
  33. Michaelis S., Beckwith J. 1982; Mechanism of incorporation of cell envelope proteins in Escherichia coli . Annual Review of Microbiology 36435–465
    [Google Scholar]
  34. Moran C. P. Jr, Lang N., LeGrice S. F. J., Lee G., Stephens M. 1982; Nucleotide sequences that signal the initiation of transcription and translation in Bacillus subtilis . Molecular and General Genetics 186339–346
    [Google Scholar]
  35. Oultram J. D., Loughlin M., Swinfield T.-J., Brehm J. K., Thompson D. E., Minton N. P. 1988; Introduction of plasmids into whole cells of Clostridium acetobutylicum by electroporation. FEMS Microbiology Letters 5683–88
    [Google Scholar]
  36. PlGGOT P. J. 1989; Revised genetic map of Bacillus subtilis 168. Regulation of Prokaryotic Development1–41 Smith I., Slepecky R. A., Setlow P. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  37. Piggot P. J., Curtis A. M., De Lencastre H. 1984; Use of integrational plasmid vectors to demonstrate the polycistronic nature of a transcriptional unit (spoilA) of Bacillus subtilis . Journal of General Microbiology 1302123–2136
    [Google Scholar]
  38. Pooley H. M., Paschoud D., Karamata D. 1987; The gtaB marker in Bacillus subtilis 168 is associated with a deficiency in UDP-glucose pyrophosphorylase. Journal of General Microbiology 1333481–3493
    [Google Scholar]
  39. Pooley H. M., Abellan F.-X., Karamata D. 1991; A conditional-lethal mutant of Bacillus subtilis 168 with a thermosensitive glycerol-3-phosphate cytidylyltransferase, an enzyme specific for the synthesis of the major wall teichoic acid. Journal of General Microbiology 137921–928
    [Google Scholar]
  40. Rosenbusch J. P. 1990; Structural and functional properties of porin channels in E. coli outer membranes. Experientia 46167–173
    [Google Scholar]
  41. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 745463–5467
    [Google Scholar]
  42. Seki T., Yoshikawa H., Takahashi H., Saito H. 1987; Cloning and nucleotide sequence of phoP, the regulatory gene for alkaline phosphatase and phosphodiesterase in Bacillus subtilis . Journal of Bacteriology 1692913–2916
    [Google Scholar]
  43. Sharp P. M., Li W. H. 1986; The codon adaptation index - a measure of directional synonymous codon usage bias and its potential applications. Nucleic Acids Research 147737–7749
    [Google Scholar]
  44. Sharp P. M., Higgins D. G., Shields D. C., Devine K. M., Hoch J. A. 1990; Bacillus subtilis gene sequences. Genetics and Biotechnology of Bacilli 389–98 Zukowski M., Ganesan A. T., Hoch J. A. Orlando, Florida: Academic Press;
    [Google Scholar]
  45. Shibaev V. N., Duckworth M., Archibald A. R., Baddiley J. 1973; The structure of a polymer containing galactosamine from walls of Bacillus subtilis 168. Biochemical Journal 135383–384
    [Google Scholar]
  46. Shields D. C., Sharp P. M. 1987; Synonymous codon usage in Bacillus subtilis reflects both translational selection and mutational biases. Nucleic Acids Research 158023–8040
    [Google Scholar]
  47. Singer S. J., Maher P. A., Yaffe M. P. 1987; On the transfer of integral proteins into membranes. Proceedings of the National Academy of Sciences of the United States of America 841960–1964
    [Google Scholar]
  48. Tinoco I. Jr, Borer P. N., Dengler B., Levine M. D., Uhlenbeck O. C., Crothers D. M., Gralla J. 1973; Improved estimation of secondary structure in ribonucleic acids. Nature New Biology 24640–41
    [Google Scholar]
  49. Tsukagoshi Y., Hikawa J., Yamashita S. 1987; Molecular cloning and characterization of the gene encoding cholinephosphate cytidylyltransferase in Saccharomyces cerevisiae . European Journal of Biochemistry 169477–486
    [Google Scholar]
  50. Ward J. B. 1981; Teichoic and teichuronic acids: biosynthesis, assembly and location. Microbiological Reviews 45211–243
    [Google Scholar]
  51. Watson M. E. E. 1984; Compilation of published signal sequences. Nucleic Acids Research 125145–5164
    [Google Scholar]
  52. Young F. E. 1967; Requirement of glucosylated teichoic acid for adsorption of phage in Bacillus subtilis 168. Proceedings of the National Academy of Sciences of the United States of America 582377–2384
    [Google Scholar]
  53. Young M., Mauel C., Margot Ph., Karamata D. 1989; Pseudoallelic relationship between non-homologous genes concerned with biosynthesis of polyglycerol phosphate and polyribitol phosphate teichoic acids in Bacillus subtilis strains 168 and W23. Molecular Microbiology 31805–1812
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-4-929
Loading
/content/journal/micro/10.1099/00221287-137-4-929
Loading

Data & Media loading...

Most cited Most Cited RSS feed