1887

Abstract

Summary: A biochemical analysis was undertaken of thermosensitive mutants of 168 harbouring mutations in several genes, involved in the synthesis of the major wall teichoic acid, poly(glycerol phosphate), poly(groP). Incorporation of a pulse of [2-H]glycerol into whole cells, following shift to the restrictive growth temperature, was used to assess synthesis of this polymer and to seek evidence of accumulation of a specific precursor. The rate of incorporation into poly(groP) was strongly decreased in all mutants; glycerol uptake was diminished by 80% or more for a strain harbouring mutation (formerly ) and one bearing (formerly ). The pool of CDP-glycerol (CDP-gro), a specific precursor of poly(groP), was increased, relative to the wild-type, for all mutations except , where the pool of CDP-gro was reduced. Cytoplasmic extracts, assayed at the permissive temperature for glycerol-3-phosphate cytidylyltransferase (gro-PCT), the enzyme synthesizing CDP-gro, revealed wild-type activities for all mutations except . Gro-PCT activity in the latter strain was 100-fold lower and, unlike that in all other mutant strains, highly thermolabile. This thermosensitivity suggests that encodes gro-PCT. The identification, in a gene encoding a poly(groP)-specific enzyme, of a mutation conferring a thermosensitive growth phenotype renders explicit the conclusion that synthesis of this teichoic acid is essential for the growth of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-4-921
1991-04-01
2021-07-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/4/mic-137-4-921.html?itemId=/content/journal/micro/10.1099/00221287-137-4-921&mimeType=html&fmt=ahah

References

  1. Anderson R. G., Douglas L. J., Hussey H., Baddiley J. 1973; The control of bacterial cell walls. Interaction in the synthesis of nucleotide precursors. Biochemical Journal 136871–876
    [Google Scholar]
  2. Bandursky R. S., Axelrod B. 1952; The chromatographic identification of some biologically important phosphate esters. Journal of Biological Chemistry 193405–410
    [Google Scholar]
  3. Boylan R. J., Mendelson N. H. 1969; Initial characterization of a temperature-sensitive rod-mutant of Bacillus subtilis . Journal of Bacteriology 1001316–1321
    [Google Scholar]
  4. Boylan R. J., Mendelson N. H., Brooks D., Young F. E. 1972; Regulation of the bacterial cell wall: analysis of a mutant of Bacillus subtilis defective in biosynthesis of teichoic acids. Journal of Bacteriology 110281–290
    [Google Scholar]
  5. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72248–254
    [Google Scholar]
  6. Brandt C., Karamata D. 1987; Thermosensitive Bacillus subtilis mutants which lyse at the non-permissive temperature. Journal of General Microbiology 1331159–1170
    [Google Scholar]
  7. Briehl M., Pooley H. M., Karamata D. 1989; Mutants of Bacillus subtilis 168 thermosensitive for growth and wall teichoic acid synthesis. Journal of General Microbiology 1351325–1334
    [Google Scholar]
  8. Brooks D., Mays L. L., Hatefi Y., Young F. E. 1971; Glucosylation of teichoic acid: solubilization and partial characterization of the uridine diphosphoglucose:polyglycerolteichoic acid glucosyl transferase from membranes of Bacillus subtilis . Journal of Bacteriology 107223–229
    [Google Scholar]
  9. Daniels M. J. 1969; Lipid synthesis in relation to the cell cycle of Bacillus megaterium KM and Escherichia coli . Biochemical Journal 115697–701
    [Google Scholar]
  10. Glaser L. 1965; The synthesis of teichoic acids. IV. On the regulation of cytidine 5’-diphosphateglycerol concentration. Biochimica et Biophysica Ada 1016–15
    [Google Scholar]
  11. Glaser L., Loewy A. 1979; Control of teichoic acid synthesis during phosphate limitation. Journal of Bacteriology 137327–331
    [Google Scholar]
  12. Honeyman A. L., Stewart G. C. 1988; Identification of the protein encoded by rodC, a cell division gene from Bacillus subtilis . Molecular Microbiology 2735–741
    [Google Scholar]
  13. Honeyman A. L., Stewart G. C. 1989; The nucleotide sequence of the rodC operon of Bacillus subtilis . Molecular Microbiology 31257–1268
    [Google Scholar]
  14. Karamata D., Gross J. D. 1970; Isolation and genetic analysis of temperature-sensitive mutants of Bacillus subtilis defective in DNA synthesis. Molecular and General Genetics 108277–287
    [Google Scholar]
  15. Karamata D., McConnell M., Rogers H. J. 1972; Mapping of rod mutants of Bacillus subtilis . Journal of acteriology 11173–79
    [Google Scholar]
  16. Karamata D., Pooley H. M., Monod M. 1987; Expression of heterologous genes for wall teichoic acid in Bacillus subtilis 168. Molecular and General Genetics 20773–81
    [Google Scholar]
  17. Lindgren V., Rutberg L. 1974; Glycerol metabolism in Bacillus subtilis: gene enzyme relationships. Journal of Bacteriology 119431–442
    [Google Scholar]
  18. Mauck J., Glaser L. 1972; On the mode of in vivo assembly of the cell wall of Bacillus subtilis . Journal of Biological Chemistry 2471180–1187
    [Google Scholar]
  19. Mauël C., Young M., Margot Ph., Karamata D. 1989; The essential nature of teichoic acids in Bacillus subtilis as revealed by insertional mutagenesis. Molecular and General Genetics 215388–394
    [Google Scholar]
  20. Mauël C., Young M., Karamata D. 1991; Genes concerned with synthesis of poly(glycerol phosphate), the essential teichoic acid in Bacillus subtilis strain 168, are organized in two divergent transcription units. Journal of General Microbiology 137929–941
    [Google Scholar]
  21. Paladini A. C., Leloir L. F. 1952; Studies on uridine-diphosphate-glucose. Biochemical Journal 51426–430
    [Google Scholar]
  22. Pooley H. M., Paschoud D., Karamata D. 1987; The gtaB marker in Bacillus subtilis 168 is associated with a deficiency in UDP-glucose pyrophosphorylase. Journal of General Microbiology 1333481–3493
    [Google Scholar]
  23. Rogers H. J. 1979; Envelope growth and synthesis in rod mutants and protoplasts of bacilli. Advances in Microbial Physiology 1925–34
    [Google Scholar]
  24. Rogers H. J., Taylor C. 1978; Autolysins and shape change in rod A mutants of Bacillus subtilis . Journal of Bacteriology 1351032–1042
    [Google Scholar]
  25. Rogers H. J., McConnell M., Burdett I. D. J. 1970; The isolation and characterization of mutants of Bacillus subtilis and Bacillus licheniformis with disturbed morphology and cell division. Journal of General Microbiology 61155–171
    [Google Scholar]
  26. Rogers H. J., McConnell M., Hughes R. C. 1971; The chemistry of the cell walls of rod mutants of Bacillus subtilis . Journal of General Microbiology 66297–308
    [Google Scholar]
  27. Rogers H. J., Thurman P. F., Taylor C., Reeve J. N. 1974; Mucopeptide synthesis by rod mutants of Bacillus subtilis . Journal of General Microbiology 85335–350
    [Google Scholar]
  28. Rosenberger R. F. 1976; Control of teichoic and teichuronic acid biosynthesis in Bacillus subtilis 168 trp. Evidence for repression of enzyme synthesis and inhibition of enzyme activity. Biochimica et Biophysica Acta 428516–524
    [Google Scholar]
  29. Roten C.-A. H., Brandt C., Karamata D. 1991; Genes involved in /weso-diaminopimelate synthesis in Bacillus subtilis: identification of the gene encoding aspartokinase I. Journal of General Microbiology 137951–962
    [Google Scholar]
  30. Sargent M. G. 1973; Membrane synthesis in synchronous cultures of Bacillus subtilis 168. Journal of Bacteriology 116397–409
    [Google Scholar]
  31. Satta G., Schito G. C., Meloni G. A. 1969; Transizione bastoncinosfera in un ceppo di Klebsiella pneumoniae. Ultrastruttura delle forme coccoidie tipiche ed anormi. Atti del XV° Congresso Nazionale di Microbiologia Torina-Saint Vincent 2247–253
    [Google Scholar]
  32. Shaw D. R. D., Mirelman D., Chatterjee A. N., Park J. T. 1970; Ribitol teichoic acid synthesis in bacteriophage-resistant mutants of Staphvlococcus aureus H*. Journal of Biological Chemistry 195101–5106
    [Google Scholar]
  33. Shiflett M. A., Brooks D., Young F. E. 1977; Cell wall and morphological changes induced by temperature shift in Bacillus subtilis cell wall mutants. Journal of Bacteriology 132681–690
    [Google Scholar]
  34. Strominger J. L. 1962; Uridine and guanosine nucleotides of hen oviduct. Journal of Biological Chemistry 2371388–1392
    [Google Scholar]
  35. Young F. E. 1967; Requirement of glucosylated teichoic acid for adsorption of phage in Bacillus subtilis 168. Proceedings of the National Academy of Sciences of the United States of America 582377–2384
    [Google Scholar]
  36. Young F. E., Smith C., Reilly B. E. 1969; Chromosomal location of genes regulating resistance to bacteriophage in Bacillus subtilis . Journal of Bacteriology 981087–1097
    [Google Scholar]
  37. Young M., Mauël C., Margot Ph., Karamata D. 1989; Pseudo-allelic relationship between non-homologous genes concerned with biosynthesis of polyglycerol phosphate and polyribitol phosphate teichoic acids in Bacillus subtilis strains 168 and W23. Molecular Microbiology 31805–1812
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-4-921
Loading
/content/journal/micro/10.1099/00221287-137-4-921
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error