1887

Abstract

Summary: In the psychrophilic bacterium sp. strain ANT-300, the temperature-related characteristics of protein synthesis in cells grown at 0 °C differed from those of cells grown at 13 °C. Cells grown at 0 °C and 13 °C transported amino acids at the same rates, dependent on the temperature at which rates were measured. The rates of protein synthesis in extracts of cells grown at 0 °C and at 13 °C differed, as a result of the changes in the properties of the soluble fraction involved in protein synthesis. Concurrently, levels of more than 24 polypeptides in the soluble fraction changed considerably. These results suggest that the difference in temperature dependence of protein synthesis in cells grown at various temperatures may be brought about by specific changes in the levels of a small number of polypeptides (less than 15% of the total number of proteins detected by silver-staining) in response to a change in temperature.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-4-817
1991-04-01
2021-04-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/4/mic-137-4-817.html?itemId=/content/journal/micro/10.1099/00221287-137-4-817&mimeType=html&fmt=ahah

References

  1. Broeze R. J., Solomon C. J., Pope D. H. 1978; Effects of low temperature on in vivo and in vitro protein synthesis in Escherichia coli and Pseudomonas fluorescens. Journal of Bacteriology 134:861–874
    [Google Scholar]
  2. Cowing D. W., Bardwell J. C. A., Craig E. A., Woolford C., Hendrix R. W., Gross C. A. 1985; Consensus sequence for Escherichia coli heat shock gene promoters. Proceedings of the National Academy of Sciences of the United States of America 822679–2683
    [Google Scholar]
  3. Das H. K., Goldstein A. 1968; Limited capacity for protein synthesis at zero degrees centigrade in Escherichia coli. Journal of Bacteriology 31:209–226
    [Google Scholar]
  4. Gallant J., Palmer L., Pao C. C. 1977; Anomalous synthesis of ppGpp in growing cells. Cell 11:181–185
    [Google Scholar]
  5. Geesey G. G., Morita R. Y. 1975; Some physiological effects of near-maximum growth temperatures on an obligately psychrophilic marine bacterium. Canadian Journal of Microbiology 21:811–818
    [Google Scholar]
  6. Goldstein J., Pollitt N. S., Inouye M. 1990; Major cold shock protein of Escherichia coli. Proceedings of National Academy of Sciences of the United States of America 87283–287
    [Google Scholar]
  7. Grossman A. D., Erickson J. W., Gross C. A. 1984; The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell 38:383–390
    [Google Scholar]
  8. Herendeen S. L., VanBogelen R. A., Neidhardt F. C. 1979; Levels of major proteins of Escherichia coli during growth at different temperatures. Journal of Bacteriology 139:185–194
    [Google Scholar]
  9. Inniss W. E., Ingraham J. L. 1978; Microbial life at low temperatures: mechanisms and molecular aspects. Microbial Life in Extreme Environments73–104 Kushner D. J. New York: Academic Press;
    [Google Scholar]
  10. Jones P. G., VanBogelen R. A., Neidhardt F. C. 1987; Induction of proteins in response to low temperature in Escherichia coli. Journal of Bacteriology 169:2092–2095
    [Google Scholar]
  11. Lee P. C., Bochner B. R., Ames B. N. 1983a; AppppA, heat-shock stress, and cell oxidation. Proceedings of the National Academy of Sciences of the United States of America 807496–7500
    [Google Scholar]
  12. Lee P. C., Bochner B. R., Ames B. N. 1983b; Diadenosine 5′,5″-P1,P4-tetraphosphate and related adenylylated nucleotides in Salmonella typhimurium. Journal of Biological Chemistry 258:6827–6834
    [Google Scholar]
  13. Lemaux P. G., Herendeen S. L., Bloch P. L., Neidhardt F. C. 1978; Transient rates of synthesis of individual polypeptides in E. coli following temperature shifts. Cell 13:427–434
    [Google Scholar]
  14. Little R., Bremer H. 1984; Transcription of ribosomal component genes and lac in a relA +/relA pair of Escherichia coli strains. Journal of Bacteriology 159:863–869
    [Google Scholar]
  15. Little R., Ryals J., Bremer H. 1983; rpoB mutation in Escherichia coli alters control of ribosome synthesis by guanosine tetraphosphate. Journal of Bacteriology 154:787–792
    [Google Scholar]
  16. McCallum K. L., Heikkila J. J., Inniss W. E. 1986; Temperature-dependent pattern of heat shock protein synthesis in psychrophilic and psychrotrophic microorganisms. Canadian Journal of Microbiology 32:516–521
    [Google Scholar]
  17. Mohr P. W., Krawiec S. 1980; Temperature characteristics and Arrhenius plots for nominal psychrophiles, mesophiles and thermo-philes. Journal of General Microbiology 121:311–317
    [Google Scholar]
  18. Neidhardt F. C., VanBogelen R. A. 1981; Positive regulatory gene for temperature-controlled proteins in Escherichia coli. Biochemical and Biophysical Research Communications 100:894–900
    [Google Scholar]
  19. Neidhardt F. C., VanBogelen R. A., Lau E. T. 1983; Molecular cloning and expression of a gene that controls the high temperature regulon of Escherichia coli. Journal of Bacteriology 153:579–603
    [Google Scholar]
  20. Nirenberg M. W. 1963; Cell-free protein synthesis directed by messenger RNA. Methods in Enzymology 6:17–23
    [Google Scholar]
  21. O’Farrell P. H. 1975; High resolution two-dimensional electro-phoresis of proteins. Journal of Biological Chemistry 250:4007–4021
    [Google Scholar]
  22. Patterson D., Gillespie D. 1972; Effects of elevated temperatures on protein synthesis in Escherichia coli. Journal of Bacteriology 112:1177–1183
    [Google Scholar]
  23. Pingoud A., Gast G., Block W., Peters F. 1983; The elongation factor Tu from Escherichia coli, aminoacyl-tRNA, and guanosine tetraphosphate from a ternary complex which is bound by programmed ribosomes. Journal of Biological Chemistry 258:14200–14205
    [Google Scholar]
  24. Ratkowsky D. A., Olley J., McMeekin T. A., Ball A. 1982; Relationship between temperature and growth rate of bacterial cultures. Journal of Bacteriology 149:1–5
    [Google Scholar]
  25. Ratkowsky D. A., Lowry R. K., McMeekin T. A., Stokes A. N., Chandler R. E. 1983; Model for bacterial culture growth rate throughout the entire biokinetic temperature range. Journal of Bacteriology 154:1222–1226
    [Google Scholar]
  26. Reichardt W., Morita R. Y. 1982; Temperature characteristics of psychrotrophic and psychrophilic bacteria. Journal of Generat Microbiology 128:565–568
    [Google Scholar]
  27. Reynolds S. H., Brantly C. H., Harris J. S., Chaney S. G. 1983; Guanosine 5′-diphosphate 3″-diphosphate levels, carbon source, and ribonucleic acid synthesis in a mutant strain of Escherichia coli. Biochemistry 22:1123–1128
    [Google Scholar]
  28. Ryals J., Little R., Bremer H. 1982a; Control of rRNA and tRNA syntheses in Escherichia coli by guanosine tetraphosphate. Journal of Bacteriology 151:1261–1268
    [Google Scholar]
  29. Ryals J., Little R., Bremer H. 1982b; Control of RNA synthesis in Escherichia coli after a shift to higher temperature. Journal of Bacteriology 151:1425–1432
    [Google Scholar]
  30. Taylor W. E., Straus D. B., Grossman A. D., Burton Z. F., Gross C. A., Burgess R. R. 1984; Transcription from a heat-inducible promoter causes heat shock regulation of sigma subunit of E. coli RNA polymerase. Cell 38:371–381
    [Google Scholar]
  31. VanBogelen R. A., Neidhardt F. C. 1990; Ribosomes as sensors of heat and cold shock in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 875589–5593
    [Google Scholar]
  32. VanBogelen R. A., Kelley P. M., , & Neidhardt F. C. 1987; Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli. Journal of Bacteriology 169:26–32
    [Google Scholar]
  33. Williams D. E., Jackson J. M. III, Chaney S. G. 1983; Characterization of RNA synthesis in an Escherichia coli mutant with a temperature-sensitive lesion in stable RNA synthesis. Journal of Bacteriology 153:616–626
    [Google Scholar]
  34. Yamamori T., Yura T. 1980; Temperature-induced synthesis of specific proteins in Escherichia coli: evidence for transcriptional control. Journal of Bacteriology 142:843–851
    [Google Scholar]
  35. Yamamori T., Yura T. 1982; Genetic control of heat-shock protein synthesis and its bearing on growth and thermal resistance in Escherichia coli K-12. Proceedings of the National Academy of Sciences of the United States of America 79860–864
    [Google Scholar]
  36. Yamamori T., Ito K., Nakamura Y., Yura T. 1978; Transient regulation of protein synthesis in Escherichia coli upon shift-up of growth temperature. Journal of Bacteriology 134:1133–1140
    [Google Scholar]
  37. Yura T., Tobe T., Ito K., Osawa T. 1984; Heat-shock regulatory gene (htpR) of Escherichia coli is required for growth at high temperature but is dispensable at low temperature. Proceedings of the National Academy of Sciences of the United States of America 816803–6807
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-4-817
Loading
/content/journal/micro/10.1099/00221287-137-4-817
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error