1887

Abstract

Summary: A derivative of QM B1551 cured of all seven resident plasmids was mutated to Lac. Transposon Tn carrying and was then used to isolate four : : fusion mutants by screening for colonies expressing the fusion in stationary phase. The sporulation frequencies of the mutants ranged from 10 to 10. Macrolide, lincosamide and streptogramin B resistance (MLS) of the mutants cotransduced 100% with the sporulation defect and all four mutations mapped near by transduction in the order: . All four mutants isolated were defective early in sporulation since -galactosidase could be detected between zero and 2 h after the end of exponential growth. Electron microscopy of two of the mutants expressing the enzyme at t–t revealed a defect prior to or just at the beginning of septum formation in one, and after completion of septum formation in the other. Little or no synthesis of dipicolinic acid, glucose dehydrogenase or alkaline phosphatase was detected in the mutants, but each was neutral protease positive. These results show that the mutations were in at least two early genes expressed before glucose dehydrogenase production. This study represents the first genetic characterization of sporulation mutants in and also demonstrates that gene fusion technology can be used in this species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-4-797
1991-04-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/4/mic-137-4-797.html?itemId=/content/journal/micro/10.1099/00221287-137-4-797&mimeType=html&fmt=ahah

References

  1. Bach M. L., Gilvarg C. 1966; Biosynthesis of dipicolinic acid in sporulating Bacillus megaterium. Journal of Biological Chemistry 241:4563–4566
    [Google Scholar]
  2. Bohall N. A., Vary P. S. 1986; Transposition of Tn917 in Bacillus megaterium. Journal of Bacteriology 167:716–718
    [Google Scholar]
  3. Bronner F., Freund T. S. 1972; Calcium accumulation during sporulation of Bacillus megaterium. Spores V187–190 Halvorson H. O., Hanson R., Campbell L. L. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Callahan J. P., Crawford I. P., Hess G. F., Vary P. S. 1983; Cotransductional mapping of the trp-his region of Bacillus megaterium. Journal of Bacteriology 154:1455–1458
    [Google Scholar]
  5. Chaloupka J., Severin A. I., Sastry K. J., Kučerová H., Strnadová M. 1982; Differences in the regulation of exocellular proteinase synthesis during growth and sporogenesis of Bacillus megaterium. Canadian Journal of Microbiology 28:1214–1218
    [Google Scholar]
  6. Chatelain S. 1975; Variations d’activities enzymatiques chez Bacillus megaterium dans differentes conditions de sporulation. Comptes Rendus de l’ Academie des Sciences, D 281:1529–1532
    [Google Scholar]
  7. Chatelain S., Fargette F. 1976; Variations d’activities enzymatiques chez un mutant asporogene de Bacillus megaterium pour differentes carences nutrionelles. Comptes Rendus de l’ Academie des Sciences, D 283:1563–1566
    [Google Scholar]
  8. Crafts-Lighty A., Ellar D. J. 1980; The structure of the outer membrane in dormant and germinated spores of Bacillus megaterium. Journal of Applied Bacteriology 48:135–145
    [Google Scholar]
  9. Deutscher M. P., Chambon P., Kornberg A. 1968; Biochemical studies of bacterial sporulation and germination. XI. Protein-synthesizing systems from vegetative cells and spores of Bacillus megaterium. Journal of Biological Chemistry 243:5117–5125
    [Google Scholar]
  10. Ellar D. J., Posgate J. A. 1974; Characterization of forespores isolated from Bacillus megaterium at different stages of development into mature spores. Spore Research21–40 Barker A. N., Gould G. W., Wolf J. New York: Academic Press;
    [Google Scholar]
  11. Ellar D. J., Lundgren D. G., Slepecky R. A. 1967; Fine structure of Bacillus megaterium during synchronous growth. Journal of Bacteriology 94:1189–1205
    [Google Scholar]
  12. Ellar D. J., Eaton M. W., Hogarth C., Wilkinson B. J., Deans J., La Nauze J. 1975; Comparative biochemistry and function of forespore and mother-cell compartments during sporulation of Bacillus megaterium cells. Spores VI425–433 Gerhardt P., Costilow R. N., Sadoff H. L. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. English J. D., Vary P. S. 1986; Isolation of recombination defective and UV sensitive mutants of Bacillus megaterium. Journal of Bacteriology 165:155–160
    [Google Scholar]
  14. Errington J., Mandelstam J. 1986; Use of a lacZ gene fusion to determine the dependence pattern of sporulation operon spoIIA mutants of Bacillus subtilis. Journal of General Microbiology 132:2967–2976
    [Google Scholar]
  15. Fliss E. R., Setlow P. 1985; Genes for Bacillus megaterium small, acid-soluble spore proteins: nucleotide sequence of two genes and their expression during sporulation. Gene 35:151–157
    [Google Scholar]
  16. Fliss E. R., Connors M. J., Loshon C. A., Curiel-Quesada E., Setlow B., Setlow P. 1985; Small, acid-soluble spore proteins of Bacillus: products of a sporulation-specific, multigene family. Molecular Biology of Microbial Differentiation60–66 Hoch J., Setlow P. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Greene R. A., Holt S. C., Leadbetter E. R., Slepecky R. A. 1971; Correlation of light and electron microscopic observations of sporulation in Bacillus megaterium. Sport Research161–180 Barker A. N., Gould G. W., Wolf J. London: Academic Press;
    [Google Scholar]
  18. Hill S. H. A. 1983; spoVH and spoVJ - new sporulation loci in Bacillus subtilis 168. Journal of General Microbiology 129:293–302
    [Google Scholar]
  19. Hirsch J. G., Fedorko M. F. 1968; Ultrastructure of human leukocytes after simultaneous fixation with glutaraldehyde and osmium tetroxide and ‘post-fixation’ in uranyl acetate. Journal of Cell Biology 38:615–627
    [Google Scholar]
  20. Hogarth C., Ellar D. J. 1978; Calcium accumulation during sporulation of Bacillus megaterium KM. Biochemical Journal 176:197–203
    [Google Scholar]
  21. Hulett F. M., Jensen K. 1988; Critical roles of spoOA and spoOH in vegetative alkaline phosphatase production in Bacillus subtilis. Journal of Bacteriology 170:3765–3768
    [Google Scholar]
  22. Imagawa M., Oku Y., El-Belbasi H. I., Teroaka M., Nishihara T., Kondo M. 1985; Synthesis and deposition of spore coat proteins during sporulation of Bacillus megaterium. Microbiology and Immunology 29:1151–1162
    [Google Scholar]
  23. Janoff A. S., Coughlin R. T., Racine F. M., McGroarty E. J., Vary J. C. 1979; Use of electron spin resonance to study Bacillus megaterium spore membranes. Biochemical and Biophysical Research Communications 89:565–570
    [Google Scholar]
  24. Janssen F. W., Lund A. J., Anderson L. E. 1958; Colorimetric assay for dipicolinic acid in bacterial spores. Science 127:26–27
    [Google Scholar]
  25. Kawamura F., Wang L.-F., Doi R. H. 1985; Catabolite-resistant sporulation (crsA) mutations in the Bacillus subtilis RNA polymerase (T43 gene (rpoD) can suppress and be suppressed by mutations in spoO genes. Proceedings of the National Academy of Sciences of the United States of America 828124–8128
    [Google Scholar]
  26. Kemper J. 1974; Gene order and cotransduction in the leu-ara-fol-pyrA region of the Salmonella typhimurium linkage map. Journal of Bacteriology 117:94–97
    [Google Scholar]
  27. Koshikawa T., Beaman T. C., Pankratz H. S., Nakashio S., Corner T. R., Gerhardt P. 1984; Resistance, germination, and permeability correlates of Bacillus megaterium spores successfully divested of integument layers. Journal of Bacteriology 159:624–632
    [Google Scholar]
  28. Kretschmer S., Fielder G. 1974; Septation sporogener und asporogener Bacillus megaterium-Zellen während des Übergangs zu Stickstoff- und Kohlenstoff-hunger. Zeitschrift für Allgemeine Mikrobiologie 14:303–312
    [Google Scholar]
  29. La Nauze J. M., Ellar D. J., Denton G., Posgate J. A. 1974; Some properties of forespores isolated from Bacillus megaterium. Spore Research41–46 Barker A. N., Gould G. W., Wolf J. New York: Academic Press;
    [Google Scholar]
  30. Landman O. E. 1957; Properties and induction of β-galactosidase in Bacillus megaterium. Biochimica et Biophysica Acta 23:558–569
    [Google Scholar]
  31. Levine M. 1957; Mutations in the temperate phage P22 and lysogeny in Salmonella. Virology 3:22–41
    [Google Scholar]
  32. Losick R., Youngman P., Piggot P. J. 1986; Genetics of endospore formation in Bacillus subtilis. Annual Review of Genetics 20:625–669
    [Google Scholar]
  33. Mandelstam J., Errington J. 1987; Dependent sequences of gene expression controlling spore formation in Bacillus subtilis. Microbiological Sciences 4:238–244
    [Google Scholar]
  34. Miller J. H. 1972 Experiments in Molecular Genetics352–355 Cold Spring Harbor, New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Millet J., Aubert J.-P. 1969; Étude de la megateriopeptidase, protease exocellulaire de Bacillus megaterium. III. Biosynthèse et rôle physiologique. Annales de l’lnstitut Pasteur 117:461–473
    [Google Scholar]
  36. Ota A. 1980; Calcium uptake by Bacillus megaterium mutant strains unable to sporulate. International Journal of Biochemistry 11:363–367
    [Google Scholar]
  37. Piggot P. J., Hoch J. A. 1985; Revised genetic linkage map of Bacillus subtilis. Microbiological Reviews 49:158–179
    [Google Scholar]
  38. Priest F. G. 1977; Extracellular enzyme synthesis in the genus Bacillus. Bacteriological Reviews 41:711–753
    [Google Scholar]
  39. Rotman Y., Fields M. L. 1968; A modified reagent for dipicolinic acid analysis. Analytical Biochemistry 22:168–172
    [Google Scholar]
  40. Sadoff H. L., Bach J. A., Kools J. W. 1965; Significance of multiple forms of glucose dehydrogenase in relation to its heat resistance. Spores III97–109 Campbell L. L., Halvorson H. O. Ann Arbor, Michigan: American Society for Microbiology;
    [Google Scholar]
  41. Sandman K., Losick R., Youngman P. 1987; Genetic analysis of Bacillus subtilis spo mutations generated by Tn917-mediated inser-tional mutagenesis. Genetics 117:603–617
    [Google Scholar]
  42. Scandella C. J., Kornberg A. 1969; Biochemical studies of bacterial sporulation and germination. XV. Fatty acids in growth, sporulation and germination of Bacillus megaterium. Journal of Bacteriology 98:82–86
    [Google Scholar]
  43. Setlow P. 1974; Polyamine levels during growth, sporulation, and spore germination of Bacillus megaterium. Journal of Bacteriology 117:1171–1177
    [Google Scholar]
  44. Setlow P. 1975; Protease and peptidase activities in growing and sporulating cells and dormant spores of Bacillus megaterium. Journal of Bacteriology 122:642–649
    [Google Scholar]
  45. Singh R. P., Setlow P. 1979; Regulation of phosphoglycerate phosphomutase in developing forespores and dormant and germinated spores of Bacillus megaterium by the level of free manganous ions. Journal of Bacteriology 139:889–898
    [Google Scholar]
  46. Sussman M. D., Vary P. S., Hartman C., Setlow P. 1988; Integration and mapping of Bacillus megaterium genes which code for small, acid soluble spore proteins and their protease. Journal of Bacteriology 170:4942–4945
    [Google Scholar]
  47. Szulmajster J., Hanson R. 1965; Physiological control of sporulation in Bacillus subtilis. Spores III162–173 Campbell L. L., Halvorson H. O. Ann Arbor, Michigan: American Society for Microbiology;
    [Google Scholar]
  48. Todd J. A., Ellar D. J. 1982; Alteration in the penicillin-binding profile of Bacillus megaterium during sporulation. Nature, London 300:640–643
    [Google Scholar]
  49. Tomich P. K., An F. Y., Clewell D. B. 1980; Properties of erythromycin- inducible transposon Tn917 in Streptococcus faecalis. Journal of Bacteriology 141:1366–1374
    [Google Scholar]
  50. Vary P. S. 1979; Transduction in Bacillus megaterium. Biochemical and Biophysical Research Communications 88:1119–1124
    [Google Scholar]
  51. Vary P. S., Tao Y.-P. 1988; Development of genetic methods in Bacillus megaterium. Genetics and Biotechnology of Bacilli 2403–407 Ganesan A. T., Hoch J. A. New York: Academic Press;
    [Google Scholar]
  52. VonTersch M. A., & Carlton B. C. 1983; Megacinogenic plasmids of Bacillus megaterium. Journal of Bacteriology 155:872–877
    [Google Scholar]
  53. Waites W. M., Kay D., Dawes I. W., Wood D. A., Warren S. C., Mandelstam J. 1970; Sporulation in Bacillus subtilis. Correlation of biochemical events with morphological changes in asporo-genous mutants. Biochemical Journal 118:667–676
    [Google Scholar]
  54. Wilkinson B. J., Ellar D. J. 1975; Morphogenesis of the membrane bound electron-transport system in sporulating Bacillus megaterium KM. European Journal of Biochemistry 55:131–139
    [Google Scholar]
  55. Yamamoto T., Balassa G. 1969; Biochemical genetics of bacterial sporulation. II. Membrane development during sporulation of B. subtilis and its mutants. Molecular and General Genetics 106:1–13
    [Google Scholar]
  56. Youngman P., Perkins J. B., Sandman K. 1985a; Use of Tn9I7-mediated transcriptional gene fusions to lacZ and cat-86 for the identification and study of spo genes in Bacillus subtilis. Molecular Biology of Microbial Differentiation47–54 Hoch J. A., Setlow P. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  57. Youngman P., Zuber P., Perkins J. B., Sandman K., Igo M., Losick R. 1985c; New ways to study developmental genes in spore-forming bacteria. Science 228:285–291
    [Google Scholar]
  58. Youngman P., Poth H., Green B., York K., Olmede G., Smith K. 1989; Methods for genetic manipulation, cloning and functional analysis of sporulation genes in Bacillus subtilis. Regulation of Prokaryotes Development, Structural and Functional Analysis of Bacterial Sporulation and Germination65–88 Smith I., Slepecky R. A., Setlow P. Washington, DC: American Society for Microbiology;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-4-797
Loading
/content/journal/micro/10.1099/00221287-137-4-797
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error