1887

Abstract

Baker’s yeast was grown in a novel type of turbidostat in which the steady-state biomass level was controlled not by the optical turbidity but by the dielectric permittivity of the suspension at appropriate radio frequencies. Dry weight, fresh weight, the optical density at 600 nm, percentage viability (from methylene blue staining), bud count and ethanol concentration were measured off-line and the cell size distribution was recorded using flow cytometry. Any changes in the physiological properties of the yeast had a negligible effect on the ratio between the permittivity set (and measured) and the steady-state dry weight, fresh weight or optical density of the cultures. The permittistat was found to provide an extremely convenient means for carrying out turbidostatic culture.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-4-735
1991-04-01
2021-05-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/4/mic-137-4-735.html?itemId=/content/journal/micro/10.1099/00221287-137-4-735&mimeType=html&fmt=ahah

References

  1. Agrawal P. 1987; An experimental study of a modified turbidostat.. Biotechnology Techniques 1:19–24
    [Google Scholar]
  2. Alberghina L., Mariani L., Martegani E., Vanoni M. 1983; Analysis of protein distribution in budding yeast.. Biotechnology and Bioengineering 25:1295–1310
    [Google Scholar]
  3. Anderson P. A. 1953; Automatic recording of the growth rates of continuously cultured microorganisms.. Journal of General Physiology 36:733–777
    [Google Scholar]
  4. Anderson P. A. 1956; Continuous recording of the growth of microorganisms under turbidostatic and chemostatic control.. Review of Scientific Instruments 27:48–51
    [Google Scholar]
  5. Blachere H., Jamart G. 1969; A flow cell photometer for bacterial growth monitoring.. Biotechnology and Bioengineering 11:1005–1010
    [Google Scholar]
  6. Boulton C. A., Maryan P. S., Loveridge D. 1989; The application of a novel biomass sensor to the control of yeast pitching rate.. Proceedings of the 22nd European Brewing ConventionZurich653–661
    [Google Scholar]
  7. Brown S. W., Oliver S. G. 1982; Isolation of ethanol-tolerant mutants of yeast by continuous selection.. European Journal of Applied Microbiology and Biotechnology 16:119–122
    [Google Scholar]
  8. Bryson V. 1958; Application of continuous culture to microbial selection.. Recent Progress in Microbiology371–380 Tunevall G. Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  9. Bryson V., Szybalski W. 1952; Microbial selection.. Science 116:45–51
    [Google Scholar]
  10. Bungay H. R., Clesceri L. S., Andrianas N. 1981; Autoselection of very rapidly growing microorganisms.. In Advances in Biotechnology 1Proceedings of the 6th International Fermentation Symposium235–241 Moo-Young M. Oxford: Pergamon Press.;
    [Google Scholar]
  11. Carr R. J. G., Brown R. G. W., Rarity J. G., Clarke D. J. 1987; Laser light scattering and related techniques.. In Biosensors: Fundamentals and Applications679–701 Turner A. P. F., Karube I., Wilson G. S. Oxford: Oxford University Press;
    [Google Scholar]
  12. Clarke D. J., Blake-Coleman B. C., Carr R. J. G., Calder M. R., Atkinson T. 1986; Monitoring reactor biomass.. Trends in Biotechnology 4:173–178
    [Google Scholar]
  13. Cole K. S., Cole R. H. 1941; Dispersion and absorption in dielectrics. 1. Alternating current characteristics.. Journal of Chemical Physics 9:341–351
    [Google Scholar]
  14. Cooper P. D., Wilson J. N., Burt A. M. 1959; The bulk growth of animal cells in continuous suspension culture.. Journal of General Microbiology 21:702–720
    [Google Scholar]
  15. Davey C. L., Kell D. B. 1989; Low-frequency dielectric properties of cell suspensions.. In: Electric Field Phenomena in Biological Systems 21IOP Short Meetings Series51–62 Paris R. London: Institute of Physics;
    [Google Scholar]
  16. Davey C. L., Kell D. B. 1990; The dielectric properties of cells and tissues: what can they tell us about the mechanisms of field/cell interactions?. Emerging Electromagnetic Medicine19–43 O’Connor M., Bentall R. H. C., Monahan J. S. New York: Springer-Verlag;
    [Google Scholar]
  17. Davey C. L. M., Kell D. B., Kemp R. B., Meredith R. W. J. 1988; On the audio- and radio-frequency dielectric behaviour of anchorage-independent, mouse L929-derived LS fibroblasts.. Bioelectrochemistry and Bioenergetics 20:83–98
    [Google Scholar]
  18. Davey C. L., Dixon N. M., Kell D. B. 1990a; Flowtovp: a spreadsheet method for linearising flow cytometric light-scattering data used in cell sizing.. Binary 2:119–125
    [Google Scholar]
  19. Davey C. L., Kell D. B., Dixon N. M. 1990b; Skatfit: a program for determining the mode of growth of individual microbial cells from flow cytometric data.. Binary 2:127–132
    [Google Scholar]
  20. Davey C. L., Markx G. H., Kell D. B. 1990c; Substitution and spreadsheet methods for analysing dielectric spectra of biological systems.. European Biophysics Journal 18:255–265
    [Google Scholar]
  21. Davey C. L., Penaloza W., Kell D. B., Hedger J. N. 1991; Real-time monitoring of the accretion of Rhizopus oligosporus biomass during the solid-substrate tempeh fermentation.. World Journal of Microbiology and Biotechnology (in the Press)
    [Google Scholar]
  22. Dean A. C. R. 1967; Some aspects of the growth of Aerobacter aerogenes in batch culture and in the turbidostat.. In Microbial Physiology and Continuous Culture11–22 Powell E. O., Evans C. G. T., Strange R. E., Tempest D. W. London: Her Majesty’s Stationery Office.;
    [Google Scholar]
  23. Dhar H. P. 1986; Electrochemical methods for the prevention of microbial fouling.. In Modern Bioelectrochemistry593–606 Gutmann F., Keyzer H. New York: Plenum Press;
    [Google Scholar]
  24. Dykhuizen D. E., Hartl D. L. 1983; Selection in chemostats.. Microbiology Reviews 47:150–168
    [Google Scholar]
  25. Ebina Y., Ekida M., Hashimoto H. 1989; Origin of changes in electrical impedance during the growth and fermentation process of yeast in batch culture.. Biotechnology and Bioengineering 33:1290–1295
    [Google Scholar]
  26. Edwards V. H., Ko R. C., Balogh S. A. 1972; Dynamics and control of continuous microbial propagators subject to substrate inhibition.. Biotechnology and Bioengineering 14:939–974
    [Google Scholar]
  27. Ferris L. E., Davey C. L., Kell D. B. 1990; Evidence from its temperature-dependence that the βdielectric dispersion of cell suspensions is not due solely to the charging of a static membrane capacitance.. European Biophysics Journal 18:267–276
    [Google Scholar]
  28. Firstenberg-Eden R., Eden G. 1984; Impedance Microbiology. Letchworth: Research Studies Press.;
    [Google Scholar]
  29. Foster K. R., Schwan H. P. 1986; Dielectric properties of tissues.. In CRC Handbook of Biological Effects of Electromagnetic Fields27–96 Polk C., Postow E. Boca Raton, Florida: CRC Press;
    [Google Scholar]
  30. Foster K. R., Schwan H. P. 1989; Dielectric properties of tissues and biological materials: a critical review.. CRC Critical Reviews in Biomedical Engineering 17:25–102
    [Google Scholar]
  31. Fraleigh S. P., Bungay H. R., Clesceri L. 1989; Continuous culture, feedback control and auxostats.. Trends in Biotechnology 7:159–164
    [Google Scholar]
  32. Fraleigh S. P., Bungay H. R., Clesceri L. S. 1990; Aerobic formation of ethanol by Saccharomyces cerevisiae in a computerised pHauxostat.. Journal of Biotechnology 13:61–72
    [Google Scholar]
  33. Grant E. H., Sheppard R. J., South G. P. 1978; Dielectric Behaviour of Biological Molecules in Solution.. Oxford: Clarendon Press.;
    [Google Scholar]
  34. Harder W., Kuenen J. G., Matin A. 1977; Microbial selection in continuous cultures.. Journal of Applied Bacteriology 43:1–24
    [Google Scholar]
  35. Harding S. H. 1986; Applications of light-scattering in microbiology.. Biotechnology and Applied Biochemistry 8:489–509
    [Google Scholar]
  36. Harris C. M., Kell D. B. 1983; The radio-frequency dielectric properties of yeast cells measured with a rapid, automated, frequency-domain dielectric spectrometer.. Bioelectrochemistry and Bioenergetics 11:15–28
    [Google Scholar]
  37. Harris C. M., Kell D. B. 1985a; The estimation of microbial biomass.. Biosensors 1:17–84
    [Google Scholar]
  38. Harris C. M., Kell D. B. 1985b; On the dielectrically observable consequences of the movement of lipids and proteins in membranes. 2. Experiments with microbial cells, protoplasts and membrane vesicles.. European Biophysics Journal 13:11–24
    [Google Scholar]
  39. Harris C. M., Todd R. W., Bungard S. J., Lovitt R. W., Morris J. G., Kell D. B. 1987; The dielectric permittivity of microbial suspensions at radio frequencies: a novel method for the real-time estimation of microbial biomass.. Enzyme and Microbial Technology 9:181–186
    [Google Scholar]
  40. Herbert D. 1958; Some principles of continuous culture.. In Recent Progress in Microbiology380–396 Tunevall G. Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  41. Herbert D., Phipps P. J., Tempest D. W. 1965; The chemostat: design and instrumentation.. Laboratory Practice 14:1150–1161
    [Google Scholar]
  42. Ingram L. O., Buttke T. M. 1985; Effects of ethanol on microorganisms.. Advances in Microbial Physiology 25:253
    [Google Scholar]
  43. James T. W. 1978; Selection and evolution of yeast cells in a chemostat.. In Cell Reproduction,127–137 Dirksen E. R., Prescott D. M., Fox C. F. New York: Academic Press;
    [Google Scholar]
  44. Jones R. P. 1987; Measures of yeast deactivation and death and their meaning.. Process Biochemistry 22:118–134
    [Google Scholar]
  45. Jones R. P., Greenfield P. F. 1986; Role of water activity in ethanol fermentations.. Biotechnology and Bioengineering 28:29–40
    [Google Scholar]
  46. Kell D. B. 1987; The principles and potential of electrical admittance spectroscopy: an introduction.. In Biosensors: Fundamentals and Applications427–468 Turner A. P. F., Karube I., Wilson G. S. Oxford: Oxford University Press;
    [Google Scholar]
  47. Kell D. B. 1988; Dielectric spectroscopy of biological systems.. ISI Atlas of Science: Biochemistry 1:25–29
    [Google Scholar]
  48. Kell D. B., Davey C. L. 1990; Conductimetric and impedimetric devices.. In Biosensors: a Practical Approach125–154 Cass A. E. G. Oxford: Oxford University Press;
    [Google Scholar]
  49. Kell D. B., Harris C. M. 1985a; On the dielectrically observable consequences of the movement of lipids and proteins in membranes. 1. Theory and overview.. European Biophysics Journal 12:181–197
    [Google Scholar]
  50. Kell D. B., Harris C. M. 1985b; Dielectric spectroscopy and membrane organisation.. Journal of Bioelectricity 4:317–348
    [Google Scholar]
  51. Kell D. B., Todd R. W. 1989; Determination of biomass.. United States Patent 4,810,650
    [Google Scholar]
  52. Kell D. B., Markx G. H., Davey C. L., Todd R. W. 1990; Realtime monitoring of cellular biomass : methods and applications.. Trends in Analytical Chemistry 9:190–194
    [Google Scholar]
  53. Kerker M. 1983; Elastic and inelastic light scattering in flow cytometry.. Cytometry 4:1–10
    [Google Scholar]
  54. Koch A. L. 1984; Turbidity measurements in microbiology.. American Society for Microbiology News 50:473–477
    [Google Scholar]
  55. Koch A. L. 1986; Estimation of size of bacteria by low-angle light-scattering measurements: theory.. Journal of Microbiological Methods 5:221–235
    [Google Scholar]
  56. Kubitschek H. E. 1974; Operation of selection pressure on microbial populations.. Symposia of the Society for General Microbiology 24:105–130
    [Google Scholar]
  57. Latimer P. 1982; Light scattering and absorption as methods of studying cell population parameters.. Annual Review of Biophysics and Bioengineering 11:129–150
    [Google Scholar]
  58. Leatherbarrow R. J. 1990; Use of nonlinear regression to analyze enzyme kinetic data: application to situations of substrate contamination and background subtraction.. Analytical Biochemistry 184:274–278
    [Google Scholar]
  59. Lovitt R. W., Walter R. P., Morris J. G., Kell D. B. 1983; Conductimetric assessment of the biomass content of immobilized (gel-entrapped) microorganisms.. Applied Microbiology and Biotechnology 23:168–173
    [Google Scholar]
  60. MacBean R. D., Hall R. J., Linklater P. M. 1979; Analysis of pH-stat continuous cultivation and the stability of the mixed fermentation in continuous yogurt production.. Biotechnology and Bioengineering 21:1517–1541
    [Google Scholar]
  61. Markx G. H., Kell D. B. 1990; Dielectric spectroscopy as a tool for the measurement of the formation of biofilms and of their removal by electrolytic cleaning pulses and biocides.. Biofouling 2:211–227
    [Google Scholar]
  62. Martin G. A., Hempfling W. P. 1976; A method for the regulation of microbial population density during continuous culture at high growth rates.. Archives of Microbiology 107:41–47
    [Google Scholar]
  63. Minkevich I. G., Kryniskaya A. Yu., Eroshin V. K. 1989; Bistat - a novel method of continuous cultivation. Biotechnology and Bioengineering 33:1157–1161
    [Google Scholar]
  64. Moss F. 1956; Adaptation of the cytochromes of Aerobacter aerogenes in response to environmental oxygen tension.. Australian Journal of Experimental Biology 34:395–406
    [Google Scholar]
  65. Moss F. J., Bush F. 1967; Working design for a 5-liter controlled continuous culture apparatus. Biotechnology and Bioengineering 9:585–602
    [Google Scholar]
  66. Munson R. J. 1970; Turbidostats. Methods in Microbiology 2:349–376
    [Google Scholar]
  67. Munson R. J., Bridges B. A. 1964; ‘Take-over’ - an unusual selection process in steady-state cultures of Escherichia coli . Journal of General Microbiology 37:411–418
    [Google Scholar]
  68. Myers J., Clark L. B. 1944; Culture conditions and the development of the photosynthetic mechanism. II. An apparatus for the continuous culture of Chlorella . Journal of General Physiology 28:103–112
    [Google Scholar]
  69. Northrop J. H. 1954; Apparatus for maintaining bacterial cultures in the steady state. Journal of General Physiology 38:105–115
    [Google Scholar]
  70. Northrop J. H., Kunitz M. 1957; The proportion of mutants in bacterial cultures. Journal of General Physiology 41:119–129
    [Google Scholar]
  71. Oltmann L. F., Schoenmaker G. S., Reunders W. N. M., Stouthamer A. H. 1978; Modification of the pH-auxostat culture method for the mass cultivation of bacteria. Biotechnology and Bioengineering 10:921–925
    [Google Scholar]
  72. Penaloza W., Davey C. L., Hedger J. N., Kell D. B. 1991; Stimulation by potassium of the growth of Rhizopus oligosporus during liquid- and solid-substrate fermentations. World Journal of Microbiology and Biotechnology (in the Press)
    [Google Scholar]
  73. Pethig R. 1979; Dielectric and Electronic Properties of Biological Materials. Chichester: John Wiley;
    [Google Scholar]
  74. Pethig R., Kell D. B. 1987; The passive electrical properties of biological systems : their significance in physiology, biophysics and biotechnology. Physics in Medicine and Biology 32:933–970
    [Google Scholar]
  75. Plrt S. J. 1975; Principles of Microbe and Cell Cultivation. Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  76. Quain D. E. 1988; Studies on yeast physiology impact on fermentation performance and product quality. Journal of the Institute of Brewing 95:315–323
    [Google Scholar]
  77. Ranzi B. M., Compagno C., Martegani E. 1986; Analysis of protein and cell volume in glucose-limited continuous cultures of budding yeast. Biotechnology and Bioengineering 28:185–190
    [Google Scholar]
  78. Rice C. W., Hempfling W. P. 1985; Nutrient-limited continuous culture in the pHauxostat. Biotechnology and Bioengineering 27:187–191
    [Google Scholar]
  79. Ryu D. D. Y., Lee S. O., Romani R. J. 1990; Determination of the growth rate for plant cell cultures : comparative studies. Biotechnology and Bioengineering 35:305–311
    [Google Scholar]
  80. Salter G. J., Kell D. B., Ash L. A., Adams J. M., Brown A. J., James R. 1990; Hydrodynamic deposition: a novel method of cell immobilisation. Enzvme and Microhial Technology 12:419–430
    [Google Scholar]
  81. Salzman G. C. 1982; Light scattering analysis of single cells. In Cell Analysis111–143 Catsimpoolas N. New York: Plenum Press;
    [Google Scholar]
  82. Salzman G. C., Mullaney P. F., Price B. J. 1979; Light scattering approaches to cell characterization. In Plow Cytometry and Sorting105–124 Melamed M. R., Mullaney P. F., Mendelsohn M. L. New York: John Wiley;
    [Google Scholar]
  83. Schanne O. H., Ceretti E. R. P. 1978; Impedance Measurements in Biological Cells. New York: John Wiley;
    [Google Scholar]
  84. Schlecht S., Ring K., Kutscher J., Eschweiler W. 1958; Ein neuer Laboratoriumsfermenter zur Züchtung von Mikroorganismen in turbidostatischen, chemostatischen und ‘batch’-Verfahren. Zeitschrift für Bakteriologie 206:246–258
    [Google Scholar]
  85. von Schulthess R., Bungay H. R., Fraleigh S. P. 1990; Competition in a pHauxostat. Biotechnology Letters 12:93–98
    [Google Scholar]
  86. Schwan H. P. 1957; Electrical properties of tissue and cell suspensions. Advances in Biological and Medical Physics 5:147–209
    [Google Scholar]
  87. Sharpless T. K., Bartholdi M., Melamed M. R. 1977; Size and refractive index dependence of simple forward angle scattering measurements in a flow system using sharply focussed illumination. Journal of Histochemistry and Cytochemistry 25:845–856
    [Google Scholar]
  88. Steen H. B. 1990; Light scattering measurement in an arc lamp-based flow cytometer. Cytometry 11:223–230
    [Google Scholar]
  89. Stoicheva N. G., Davey C. L., Markx G. H., Kell D. B. 1989; Dielectric spectroscopy: a rapid method for the determination of solvent biocompatibility during biotransformations. Biocatalysis 2:245–255
    [Google Scholar]
  90. Stouthamer A. H., Bettenhaussen C. W. 1976; Energetic aspects of anaerobic growth of Aerobacter aerogenes in complex medium. Archives of Microbiology 111:21–23
    [Google Scholar]
  91. Symons M. R., Korenstein R., Harris C. M., Kell D. B. 1986; Dielectric spectroscopy of energy coupling membranes : chloroplast thylakoids. Bioelectrochemistry and Bioenergetics 16:45–54
    [Google Scholar]
  92. Takashima S. 1989; Electrical Properties of Biopolymers and Membranes. Bristol: Adam Hilger;
    [Google Scholar]
  93. Tempest D. W. 1970; The continuous cultivation of microorganisms. Theory of the chemostat. Methods in Microbiology 2:260–276
    [Google Scholar]
  94. Trivedi N. B., Jacobson G. 1986; Recent advances in baker’s yeast. Progress in Industrial Microbiology 23:45–71
    [Google Scholar]
  95. Van Uden N. 1989; Alcohol Toxicity in Yeasts and Bacteria. Boca Raton, Florida: CRC Press;
    [Google Scholar]
  96. Watson T. G. 1969; Steady state operation of a continuous culture at maximum growth rate by control of carbon dioxide production. Journal of General Microbiology 59:83–89
    [Google Scholar]
  97. Watson T. G. 1972; The present status and future prospects of the turbidostat. Journal of Applied Chemistry 22:229–243
    [Google Scholar]
  98. Wyatt P. J. 1968; Differential light scattering: a physical method for identifying living bacterial cells. Applied Optics 7:1879–1896
    [Google Scholar]
  99. Zimmermann U. 1982; Electric field-mediated cell fusion and related electrical phenomena. Biochimica et Biophysica Acta 694:227–277
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-4-735
Loading
/content/journal/micro/10.1099/00221287-137-4-735
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error