1887

Abstract

catabolizes both 4-hydroxyphenylacetic acid and 3-hydroxyphenylacetic acid via -cleavage of 3,4-dihydroxyphenylacetic acid, ultimately yielding pyruvate and succinate. The organism can synthesize two hydroxylases catalysing 3,4-dihydroxyphenylacetic acid formation, which differ in substrte specificity, cofactor requirement, kinetics and regulation. Five enzymes sequentially involved in the catabolism of 3,4-dihydroxyphenylacetic acid are encoded on a 7 kbp fragment of the chromosome that has been isolated in a recombinant plasmid.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-3-621
1991-03-01
2021-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/3/mic-137-3-621.html?itemId=/content/journal/micro/10.1099/00221287-137-3-621&mimeType=html&fmt=ahah

References

  1. Adachi K., Takeda Y., Senoh S., Kita H. 1964; Metabolism of p-hydroxyphenylacetic acid in Pseudomonas ovalis. Biochimica et Biophysica Acta 93:483–493
    [Google Scholar]
  2. Alonso J. M., Garrido-Pertierra A. 1982; Carboxymethylhy-droxymuconic semialdehyde dehydrogenase in the 4-hydroxyphenyl-acetate semialdehyde catabolic pathway of Escherichia coli. Biochimica et Biophysica Acta 719:165–167
    [Google Scholar]
  3. Anderson J. J., Dagley S. 1980; Catabolism of aromatic acids in Trichosporon cutaneum. Journal of Bacteriology 141:534–543
    [Google Scholar]
  4. Blakey E. R. 1972; Microbial conversion of p-hydroxyphenylacetic acid to homogentisic acid. Canadian Journal of Microbiology 18:1247–1255
    [Google Scholar]
  5. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  6. Chow L. T., Kahmann R., Kamp D. 1977; Electron microscopy characterization of DNA of non-effective deletion mutants of bacteriophage Mu. Journal of Molecular Biology 113:591–609
    [Google Scholar]
  7. Cooper R. A., Skinner M. A. 1980; Catabolism of 3-and 4-hydroxyphenylacetate by the 3,4-dihydroxyphenylacetate pathway in Escherichia coli. Journal of Bacteriology 143:302–306
    [Google Scholar]
  8. Fawcett T., Garrido-Pertierra A., Cooper R. A. 1989; 5-Carboxymethyl-2-hydroxymuconic semialdehyde dehydrogenases of Escherichia coli C and Klebsiella pneumoniae M5al show very high N-terminal sequence homology. FEMS Microbiology Letters 57:307–312
    [Google Scholar]
  9. Ferrer E., Cooper R. A. 1988; Studies with a cloned Escherichia coli C 2-oxohept-3-ene-l,7-dioate hydratase gene. FEMS Microbiology Letters 52:155–160
    [Google Scholar]
  10. Garrido-Pertierra A., Cooper R. A. 1981; Identification and purification of distinct isomerase and decarboxylase enzymes involved in the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli. European Journal of Biochemistry 117:581–584
    [Google Scholar]
  11. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  12. Merrick M. J., Gibbins J. R., Postgate J. R. 1987; A rapid and efficient method for plasmid transformation of Klebsiella pneumoniae and Escherichia coli. Journal of General Microbiology 133:2053–2057
    [Google Scholar]
  13. Miller J. H. 1972 Experiments in Molecular Genetics135–139 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  14. Parke D., Ornston L. N. 1976; Constitutive synthesis of enzymes of the protocatechuate pathway and of the βketoadipate uptake system in mutant strains of Pseudomonas putida. Journal of Bacteriology 126:272–281
    [Google Scholar]
  15. Postma P. W. 1986; Catabolite repression and related processes. Symposia of the Society for General Microbiology 39:21–49
    [Google Scholar]
  16. Sánchez M., Fernández J., Martín M., Gibello A., Garrido-Pertierra A. 1989; Purification and properties of two succinic semialdehyde dehydrogenases from Klebsiella pneumoniae. Biochimica et Biophysica Acta 990:225–231
    [Google Scholar]
  17. Sparnins V. L., Chapman P. J. 1976; Catabolism of ltyrosine by the homoprotocatechuate pathway in Gram-positive bacteria. Journal of Bacteriology 127:362–366
    [Google Scholar]
  18. Sparnins V. L., Chapman P. J., Dagley S. 1974; Bacterial degradation of 4-hydroxyphenylacetic acid and homoprotocatechuic acid. Journal of Bacteriology 120:159–167
    [Google Scholar]
  19. Sparnins V. L., Anderson J. J., Omans J., Dagley S. 1978; Degradation of 4-hydroxyphenylacetic acid by Trichosporon cutaneum. Journal of Bacteriology 136:449–451
    [Google Scholar]
  20. Spoelstra S. F. 1978; Degradation of tyrosine in anaerobically stored piggery wastes and in pig feces. Applied and Environmental Microbiology 36:631–638
    [Google Scholar]
  21. van den Tweel W. J. J., Janssens R. J. J., de Bont J. A. M. 1986; Degradation of 4-hydroxyphenylacetate by Xanthobacter 124X; physiological resemblance with other Gram-negative bacteria. Antonie van Leeuwenhoek 52:309–318
    [Google Scholar]
  22. van den Tweel W. J. J., Smit J. P., de Bont J. A. M. 1988; Catabolism of DL-1-phenylhydracrylic, phenylacetic and 3-and 4-hydroxyphenylacetic acid via homogentisic acid in Flavobacterium sp. Archives of Microbiology 149:207–213
    [Google Scholar]
  23. Wigmore G. J., Diberardino D., Bayly R. C. 1977; Regulation of the enzymes of the metacleavage pathway of Pseudomonas putida : a regulatory model. Journal of General Microbiology 100:81–87
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-3-621
Loading
/content/journal/micro/10.1099/00221287-137-3-621
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error