1887

Abstract

Teicoplanin, a glycopeptide antibiotic produced by , comprises five main components, denoted T-A2 to T-A2-5, differing in the structure of their acyl side chain, which is linear in T-A2-1 and T-A2-3 and branched in the other components. Production of T-A2-1, characterized by a linear C10:1 acyl moiety, is entirely dependent on the presence of linoleate in the fermentation medium. Addition to the medium of oleic acid esters at 2 g l increases the yields of T-A2-3, characterized by a linear C10:0 acyl chain, about threefold. The antibiotic linear side chains thus appear to originate from C18 unsaturated acid by β-oxidation degradation. The percentage of T-A2-2, T-A2-4 and T-A2-5, bearing the iso-C10:0, anteiso-C11:0 and iso-C11:0 acyl moieties, respectively, is strongly influenced by the presence in the medium of the amino acids known to be precursors of branched-chain fatty acids. Thus, valine increases the production of T-A2-2 whereas isoleucine or leucine increase the relative yields of T-A2-4 or T-A2-5, respectively. Analysis of the total cell lipids upon addition of the same amino acid shows corresponding increases in the proportion of the iso-C16:0, iso-C15:0 or anteiso-C17:0. A mutant strain, which produces a novel teicoplanin with a linear C9:0 chain, differs from the wild strain in the presence of the linear C17:1 acid in its lipids. The relative incorporation of [C]acetate into teicoplanin acyl moieties is substantially lower when this precursor is added to grown mycelium rather than at the time of inoculation. The results suggest that teicoplanin branched acyl moieties also originate from β-oxidation degradation of cellular long-chain fatty acids.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-3-587
1991-03-01
2021-05-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/3/mic-137-3-587.html?itemId=/content/journal/micro/10.1099/00221287-137-3-587&mimeType=html&fmt=ahah

References

  1. Arima K., Okazaki H., Okazaki H., Yamada K., Beppu T. 1973; Effect of exogenous fatty acids on the cellular fatty acids composition and neomycin formation in a mutant strain of Streptomyces fradiae . Agricultural and Biological Chemistry 37:2313–2317
    [Google Scholar]
  2. Barna J. C., Williams D. H., Stone D. J. M., Leung T. W. C., Doddrell D. M. 1984; Structure elucidation of the teicoplanin antibiotics. Journal of the American Chemical Society 106:4895–4902
    [Google Scholar]
  3. Borghi A., Coronelli C., Faniuolo L., Allievi G., Pallanza R., Gallo G. G. 1984; Teichomycins, new antibiotics from Actinoplanes teichomyceticus nov. sp. IV. Separation and characterization of the components of teichomycin (teicoplanin). Journal of Antibiotics, 37:615–620
    [Google Scholar]
  4. Borghi A., Antonini P., Zanol M., Ferrari P., Zerilli L. F., Lancini G. C. 1989; Isolation and structure determination of other two related substances of teicoplanin, a glycopeptide antibiotic. Journal of Antibiotics 42:361–366
    [Google Scholar]
  5. Chung S. K., Taylor P., Oh Y. K., DeBrosse C., Jeff P. W. 1986; Biosynthetic studies of aridicin antibiotics. I. Labelling pattern and overall pathways. Journal of Antibiotics 39:642–651
    [Google Scholar]
  6. Cometti A., Gallo G. G., Kettenring J., Panzone G. B., Tuan G., Zerilli L. F. 1988; Isolation and structure determination of the main related substances of teicoplanin, a glycopeptide antibiotic. Il Farmaco Edizione Scientifica 43:1005–1018
    [Google Scholar]
  7. Coronelli C., Gallo G. G., Cavalleri B. 1987; Teicoplanin: chemical, physico-chemical and biological aspects. Il Farmaco Edizione Scientifica 42:767–787
    [Google Scholar]
  8. Corti A., Cassani G. 1985; Synthesis and characterization of d-alanyl-D-alanine-agarose. Applied Biochemistry and Biotechnology 11:101–108
    [Google Scholar]
  9. Graefe U., Roth M., Krebs D. 1982a; Effect of L-valine and l-isoleucine on fatty acid composition of Streptomyces hygroscopicus and S. griseus . Zeitschrift für Allgemeine Mikrobiologie 22:595–599
    [Google Scholar]
  10. Graefe U., Reinhardt G., Krebs D., Roth M., Noack D. 1982b; Altered lipid composition in a non-differentiating derivative of Streptomyces hygroscopicus . Journal of General Microbiology 128:2693–2698
    [Google Scholar]
  11. Hammond S. J., Williams D. H., Nielsen R. V. 1983; The biosynthesis of ristocetin. Journal of the Chemical Society Chemical Communications116–117
    [Google Scholar]
  12. Kaneda T. 1977; Fatty acids of the genus Bacillus', an example of branched chain preference. Bacteriological Reviews 41:391–418
    [Google Scholar]
  13. Kroppensted R. M. 1985; Fatty acids and menaquinone analysis of actinomycetes and related organisms. Chemical Methods in Bacterial Systematics173–199 Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  14. Lechevalier M. P., De Bievre C., Lechevalier H. 1977; Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochemical Systematics and Ecology 5:249–260
    [Google Scholar]
  15. Malabarba A., Strazzolini P., Depaoli A., Landi M., Berti M., Cavalleri B. 1984; Teicoplanin, antibiotics from Actinoplanes teichomyceticus nov. sp. VI. Chemical degradation : physico-chemical and biological properties of acid hydrolysis products. Journal of Antibiotics 37:988–999
    [Google Scholar]
  16. Strazzolini P., Malabarba A., Cavalleri B. 1986; Chemical process for preparing antibiotic L17054. US Patent 4594187
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-3-587
Loading
/content/journal/micro/10.1099/00221287-137-3-587
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error