1887
Preview this article:
Zoom in
Zoomout

The murein hydrolases of : properties, functions and impact on the course of infections , Page 1 of 1

| /docserver/preview/fulltext/micro/137/3/mic-137-3-441-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-3-441
1991-03-01
2021-04-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/3/mic-137-3-441.html?itemId=/content/journal/micro/10.1099/00221287-137-3-441&mimeType=html&fmt=ahah

References

  1. Adam A., Petit J.-F., Lefrancier P., Lederer E. 1981; Muramyl peptides - chemical structure, biological activity and mechanism of action. Molecular and Cellular Biochemistry 41:27–47
    [Google Scholar]
  2. Amanuma H., Strominger J. L. 1980; Purification and properties of penicillin-binding proteins 5 and 6 from Escherichia coli membranes. Journal of Biological Chemistry 255:11173–11180
    [Google Scholar]
  3. Beachey E. H., Keck W., de Pedro M. A., Schwarz U. 1981; Exoenzymatic activity of transglycosylase isolated from Escherichia coli . European Journal of Biochemistry 116:355–358
    [Google Scholar]
  4. Beck B. D., Park J. T. 1976; Activity of three murein hydrolases during the cell division cycle of Escherichia coli K-12 as measured in toluene-treated cells. Journal of Bacteriology 126:1250–1260
    [Google Scholar]
  5. Beck B. D., Park J. T. 1977; Basis for the observed fluctuation of carboxypeptidase II activity during the cell cycle in BUG 6, a temperature-sensitive division mutant of Escherichia coli . Journal of Bacteriology 130:1292–1302
    [Google Scholar]
  6. Bernander R., Nordstrom K. 1990; Chromosome replication does not trigger cell division in E. coli . Cell 60:365–374
    [Google Scholar]
  7. Betzner A. S., Keck W. 1989; Molecular cloning, overexpression and mapping of the slt gene encoding the soluble lytic transglycosylase of Escherichia coli . Molecular and General Genetics 219:489–491
    [Google Scholar]
  8. Betzner A. S., Ferreira L. C. S., Höltje J.-V., Keck W. 1990; Control of the activity of the soluble lytic transglycosylase by the stringent response in Escherichia coli . FEMS Microbiology Letters 67:161–164
    [Google Scholar]
  9. Bienkowska-Szewczyk Κ., Lipinska B., Taylor A. 1981; The R gene of bacteriophage lambda is the murein transglycosylase. Molecular and General Genetics 184:111–114
    [Google Scholar]
  10. Blumberg P. M., Strominger J. L. 1974; Interaction of penicillin with the bacterial cell: penicillin-binding proteins and penicillinsensitive enzymes. Bacteriological Reviews 38:291–335
    [Google Scholar]
  11. Bouloc P., Jaffe A., D’Ari R. 1989; The Escherichia coli lov gene product connects peptidoglycan synthesis, ribosomes and growth rate. EMBO Journal 8:317–323
    [Google Scholar]
  12. Briese T., Hakenbeck R. 1985; Interaction of the pneumococcal amidase with lipoteichoic acid and choline. European Journal of Biochemistry 146:417–427
    [Google Scholar]
  13. Broome-Smith J. K. 1985; Construction of a mutant of E. coli that has deletions of both the penicillin-binding proteins 5 and 6 genes. Journal of General Microbiology 131:2115–2118
    [Google Scholar]
  14. Broome-Smith I. K., Joannidis I., Edelman A., Spratt B. G. 1988; Nucleotide sequences of the penicillin-binding protein 5 and 6 genes of Escherichia coli . Nucleic Acids Research 16:1617
    [Google Scholar]
  15. Buchanan C. E., Sowell M. O. 1982; Synthesis of penicillin-binding protein 6 by stationary-phase Escherichia coli . Journal of Bacteriology 151:491–494
    [Google Scholar]
  16. Burman L. G., Park J. T. 1983; Changes in the composition of Escherichia coli murein as it ages during exponential growth. Journal of Bacteriology 155:447–453
    [Google Scholar]
  17. Burman L. G., Park J. T. 1984; Molecular model for elongation of the murein sacculus of Escherichia coli . Proceedings of the National Academy of Sciences of the United States of America 811844–1848
    [Google Scholar]
  18. Burman L. G., Reichler J., Park J. T. 1983; Evidence for multisite growth of Escherichia coli murein involving concomitant endopeptidase and transpeptidase activities. Journal of Bacteriology 156:386–392
    [Google Scholar]
  19. Cleveland R. F., Höltje J.-V., Wicken A. J., Tomasz A., DaneoMoore L., Shockman G. D. 1975; Inhibition of bacterial-wall lysins by lipoteichoic acids and related compounds. Biochemical and Biophysical Research Communications 67:1128–1135
    [Google Scholar]
  20. Cookson B. T., Cho H.-L., Herwaldt L. A., Goldman W. E. 1989; Biological activities and chemical composition of purified tracheal cytotoxin of Bordetella pertussis . Infection and Immunity 57:2223–2229
    [Google Scholar]
  21. Cozens R., Markiewicz Z., Tuomanen E. 1989; The role of autolysins in the activity of imipenem and CGP 31608, a novel penem, against slowly growing bacteria. Antimicrobial Agents and Chemotherapy 33:1819–1821
    [Google Scholar]
  22. Criegee H., Hammes W. P. 1983; Comparison of the effects on murein synthesis of βlactam antibiotics and damino acids. In The Target of Penicillin577–582 Hakenbeck R., Höltje J.-V., Labischinski H. Berlin New York: Walter de Gruyter;
    [Google Scholar]
  23. Donachie W. D., Begg K. J., Sullivan N. F. 1984; Morphogenes of Escherichia coli . In Microbial Development2762 Losick R., Shapiro L. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Fleming T. J., Wallsmith D. E., Rosenthal R. S. 1986; Arthropathie properties of gonococcal peptidoglycan fragments: implications for the pathogenesis of disseminated gonococcal disease. Infection and Immunity 52:600–608
    [Google Scholar]
  25. Frere O. M., Joris B. 1985; Penicillin-sensitive enzymes in peptidoglycan biosynthesis. CRC Critical Reviews in Microbiology 11:299–396
    [Google Scholar]
  26. Ferreira L. C. S., Schwarz U., Keck W., Charlier P., Dideberg O., Ghuysen J.-M. 1988; Properties and crystallization of genetically engineered, water-soluble derivative of penicillin-binding protein 5 of Escherichia coli K12. European Journal of Biochemistry 171:11–16
    [Google Scholar]
  27. Ghuysen J.-M. 1968; Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism. Bacteriological Reviews 32:425–464
    [Google Scholar]
  28. Ghuysen J.-M. 1977; The concept of the penicillin target from 1965 until today. Journal of General Microbiology 101:13–33
    [Google Scholar]
  29. Glauner B., Höltje J.-V. 1990; Growth pattern of the murein sacculus of Escherichia coli . Journal of Biological Chemistry 265:18988–18996
    [Google Scholar]
  30. Glauner B., Höltje J.-V., Schwarz U. 1988; The composition of the murein of Escherichia coli . Journal of Biological Chemistry 263:10088–10095
    [Google Scholar]
  31. Goodell. 1985; Recycling of murein by Escherichia coli . Journal of Bacteriology 163:305–310
    [Google Scholar]
  32. Goodell E. W., Higgins C. F. 1987; Uptake of cell wall peptides by Salmonella typhimurium and Escherichia coli . Journal of Bacteriology 169:3861–3865
    [Google Scholar]
  33. Goodell E. W., Schwarz U. 1977; Enzymes synthesizing and hydrolyzing murein in Escherichia coli . European Journal of Biochemistry 81:205–210
    [Google Scholar]
  34. Goodell E. W., Schwarz U. 1983; Cleavage and resynthesis of peptide cross bridges in Escherichia coli murein. Journal of Bacteriology 156:136–140
    [Google Scholar]
  35. Goodell E. W., Schwarz U. 1985; Release of cell wall peptides into culture medium by exponentially growing Escherichia coli . Journal of Bacteriology 162:391–397
    [Google Scholar]
  36. Goodell E. W., Tomasz A. 1980; Alteration of Escherichia coli murein during amino acid starvation. Journal of Bacteriology 144:1009–1016
    [Google Scholar]
  37. Goodell E. W., Lopez R., Tomasz A. 1976; Suppression of lytic effect of βlactams on Escherichia coli and other bacteria. Proceedings of the National Academy of Sciences of the United States of America 733293–3297
    [Google Scholar]
  38. Hakenbeck R., Goodell E. W., Schwarz U. 1974; Compart-mentalization of murein hydrolases in the envelope of Escherichia coli . FEBS Letters 40:261–264
    [Google Scholar]
  39. Hakenbeck R., Messer W. 1977; Activity of murein hydrolases in synchronized cultures of Escherichia coli . Journal of Bacteriology 129:1239–1244
    [Google Scholar]
  40. Handwerger S., Tomasz A. 1985; Antibiotic tolerance among clinical isolates of bacteria. Reviews of Infectious Diseases 7:368–386
    [Google Scholar]
  41. Harkness R. E., Ishiguro E. E. 1983; Temperature-sensitive autolysis-defective mutants of Escherichia coli . Journal of Bacteriology 155:15–21
    [Google Scholar]
  42. Harkness R. E., Mirelman D., Ishiguro E. E. 1981; Regulation of D-alanine carboxypeptidase and peptidoglycan cross-linkage in amino acid-deprived Escherichia coli . Journal of Bacteriology 145:845–849
    [Google Scholar]
  43. Hartmann R., Höltje J.-V., Schwarz U. 1972; Targets of penicillin action in Escherichia coli . Nature; London: 235426–429
    [Google Scholar]
  44. Hartmann R., Bock-Henning S. B., Schwarz U. 1974; Murein hydrolases in the envelope of Escherichia coli . European Journal of Biochemistry 41:203–208
    [Google Scholar]
  45. van Heijenoort Y., van Heijenoort J. 1971; Study of the Nacetylmuramyl-lalanine amidase activity in Escherichia coli . FEBS Letters 15:137–141
    [Google Scholar]
  46. van Heijenoort J., Parquet C., Flouret B., van Heijenoort Y. 1975; Envelope-bound Nacetylmuramyl-lalanine amidase of Escherichia coli K12. European Journal of Biochemistry 58:611–619
    [Google Scholar]
  47. van Heijenoort Y., Derrien M., van Heijenoort J. 1978; Polymerization by transglycosylation in the biosynthesis of the peptidoglycan of Escherichia coli K12 and its inhibition by antibiotics. FEBS Letters 89:141–144
    [Google Scholar]
  48. Hoffmann B., Messer W., Schwarz U. 1972; Regulation of polar cap formation in the life cycle of Escherichia colt . Journal of Supramolecular Structure 1:29–37
    [Google Scholar]
  49. Höltje J.-V., Glauner B. 1990; Structure and metabolism of the murein sacculus. Research in Microbiology 141:75–89
    [Google Scholar]
  50. Höltje J.-V., Keck W. 1988; Organization of the major autolysin in the envelope of Escherichia coli . In Antibiotic Inhibition of Bacterial Cell Surface Assembly and Function181–188 Actor P., Daneo-Moore L., Higgins M. L., Salton M. R. J., Shockman G. D. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  51. Höltje J.-V., Schwarz Ulla. 1983; Coenzyme A-glutathione disulfide : an endogenous inhibitor of the lytic enzymes in Escherichia coli . In The Target of Penicillin185–190 Hakenbeck R., Höltje J.-V., Labischinski H. Berlin New York: Walter de Gruyter;
    [Google Scholar]
  52. Höltje J.-V., Schwarz U. 1985; Biosynthesis and growth of the murein sacculus. In Molecular Cytology of E. coli77–119 Nanninga N. London: Academic Press;
    [Google Scholar]
  53. Höltje J.-V., Schwarz U. 1989; The metabolism of murein in bacteria: a source of bioactive compounds in the host organism. In Bioactive Metabolites from Microorganisms101–112 Bushell M. E., Gräfe U. Amsterdam: Elsevier;
    [Google Scholar]
  54. Höltje J.-V., Tomasz A. 1975; Lipoteichoic acid: a specific inhibitor of autolysin activity in Pneumococcus . Proceedings of the National Academy of Sciences of the United States of America 721690–1694
    [Google Scholar]
  55. Höltje J.-V., Mirelman D., Sharon N., Schwarz U. 1975; Novel type of murein transglycosylase in Escherichia coli . Journal of Bacteriology 124:1067–1076
    [Google Scholar]
  56. Höltje J.-V., Fiedler W., Rotering H., Walderich B., van Duin J. 1988; Lysis induction of Escherichia coli by the cloned lysis protein of the phage MS2 depends on the presence of osmoregulatory membrane-derived oligosaccharides. Journal of Biological Chemistry 263:3539–3541
    [Google Scholar]
  57. Hrebenda J. 1979; Mutants of Escherichia coli with altered level of beta-Nacetylglucosaminidase activities. Acta Microbiologica Polonica 28:53–62
    [Google Scholar]
  58. Iida K., Hirota Y., Schwarz U. 1983; Mutants of Escherichia coli defective in penicillin-insensitive murein ddendopeptidase. Molecular and General Genetics 189:215–221
    [Google Scholar]
  59. Ingram L. O. 1981; Mechanism of lysis of Escherichia coli by ethanol and other chaotropic agents. Journal of Bacteriology 146:331–336
    [Google Scholar]
  60. Iwaya M., Strominger J. L. 1977; Simultaneous deletion of dalanine carboxypeptidase 1 B-C and penicillin-binding component IV in a mutant of E. coli K12. Proceedings of the National Academy of Sciences of the United States of America 742980–2984
    [Google Scholar]
  61. Izaki K., Matsuhashi M., Strominger J. L. 1968; Biosynthesis of the peptidoglycan of bacterial cell walls. XIII. Peptidoglycan transpeptidase and dalanine carboxypeptidase : penicillin-sensitive enzymatic reaction in strains of Escherichia coli . Journal of Biological Chemistry 243:3180–3192
    [Google Scholar]
  62. Jackson M. E., Pratt M. J. 1987; An 18 amino acid amphiphilic helix forms the membrane-anchoring domain of the Escherichia coli penicillin-binding protein 5. Molecular Microbiology 1:23–28
    [Google Scholar]
  63. Karibian D., Pellón G., Starka J. 1981; Autolysis of a division mutant of Escherichia coli . Journal of General Microbiology 126:5561
    [Google Scholar]
  64. Karnovsky M. L. 1986; Muramyl peptides in mammalian tissues and their effects at the cellular level. Federation Proceedings 452556–2560
    [Google Scholar]
  65. Kaufman W., Bauer K. 1958; Some studies on the mechanism of the anaerobic autolysis of Bacillus subtilis . Journal of General Microbiology 18:17–21
    [Google Scholar]
  66. Keck W., Schwarz U. 1979; Escherichia coli murein-ddendopeptidase insensitive to βlactam antibiotics. Journal of Bacteriology 139:770–774
    [Google Scholar]
  67. Keck W., van Leeuwen A. M., Huber M., Goodell E. W. 1990; Cloning and characterization of mepA the structural gene of the penicillin-insensitive murein endopeptidase from Escherichia coli . Molecular Microbiology 4:209–219
    [Google Scholar]
  68. Keck W., Wientjes F. B., Schwarz U. 1985; Comparison of two hydrolytic murein transglycosylases of Escherichia coli . European Journal of Biochemistry 148:493–497
    [Google Scholar]
  69. Kitano K., Tomasz A. 1979; Triggering of autolytic cell wall degradation in Escherichia coli by beta-lactam antibiotics. Antimicrobial Agents and Chemotherapy 16:838–848
    [Google Scholar]
  70. Kitano K., Tomasz A. 1980; Murein hydrolase defect in the beta lactam tolerant mutants of Escherichia coli . FEMS Microbiology Letters 7:133–136
    [Google Scholar]
  71. Kitano K., Tuomanen E., Tomasz A. 1986; Transglycosylase and endopeptidase participate in the degradation of murein during autolysis of Escherichia coli . Journal of Bacteriology 167:759–765
    [Google Scholar]
  72. Klencke S. 1980; Genetische und physiologische Charakterisierung von Mutanten von E. coli PA3092 mit einem Defekt der N-acetylmuramyl-lalanin-amidase. Dissertation, Fakultät für Biologie der Eberhard-Karls-Universität Tübingen FRG;
    [Google Scholar]
  73. Koch A. L. 1990; Additional arguments for the key role of ‘smart’ autolysins in the enlargement of the wall of Gram-negative bacteria. Research in Microbiology 141:529–541
    [Google Scholar]
  74. Korat B., Keck W. 1988; Expression of dacB the structural gene of penicillin-binding protein 4, in Escherichia coli . In Antibiotic Inhibition of Bacterial Cell Surface Assembly and Function306–311 Actor P., Daneo-Moore L., Higgins M. L., Salton M. R. J., Shockman G. D. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  75. Krueger I. M., Karaszewski J. W., Da venne D., Shoham S. 1986; Somnogenic muramyl peptides. Federation Proceedings 452552–2555
    [Google Scholar]
  76. Krueger J. M., Pappenheimer J. R., Karnovsky M. L. 1982; Sleep-promoting effects of muramyl peptides. Proceedings of the National Academy of Sciences of the United States of America 796102–6106
    [Google Scholar]
  77. Kusser W., Ishiguro E. E. 1985; Involvement of the relA gene in the autolysis of Escherichia coli induced by inhibitors of peptidoglycan biosynthesis. Journal of Bacteriology 164:861–865
    [Google Scholar]
  78. Kusser W., Schwarz U. 1980; Escherichia coli murein transglycosylase - purification by affinity chromatography and interaction with polynucleotides. European Journal of Biochemistry 103:277–281
    [Google Scholar]
  79. Lederer E. 1986; Immunomodulation by muramyl peptides and trehalose diesters in experimental parasitology. International Journal of Immunotherapy 11:267–278
    [Google Scholar]
  80. Leduc M., van Heijenoort J. 1980; Autolysis of Escherichia coli . Journal of Bacteriology 142:52–59
    [Google Scholar]
  81. Leduc M., Kasra R., van Heijenoort J. 1982; Induction and control of the autolytic system of Escherichia coli . Journal of Bacteriology 152:26–34
    [Google Scholar]
  82. Lopez R., Ronda-Rain C., Tapia A., Waks S., Tomasz A. 1976; Suppression of the lytic and bactericidal effects of all wall inhibitory antibiotics. Antimicrobial Agents and Chemotherapy 10:697–706
    [Google Scholar]
  83. Lubitz W., Harkness R., Ishiguro E. E. 1984; Requirement for a functional host cell autolytic enzyme system for lysis of Escherichia coli by bacteriophage ϕX174. Journal of Bacteriology 159:385–387
    [Google Scholar]
  84. Maass D., Pelzer H., Weidel W. 1964; Reinigung, Eigenschaften und Substratspezifität einer Nacetylglucosaminidase aus E. coli B. Zeitschrift für Naturforschung 19b:413–418
    [Google Scholar]
  85. McQuillen K. 1958; Lysis resulting from metabolic disturbance. Journal of General Microbiology 18:498–512
    [Google Scholar]
  86. Markiewicz Z., Broome-Smith J.-K., Schwarz U., Spratt B. G. 1982; Spherical E. coli due to elevated levels of D-alanine carboxypeptidase. Nature; London: 297702–704
    [Google Scholar]
  87. Martin S. A., Karnovsky M. L., Krueger J. M., Pappenheimer J. R., Biemann K. 1984; Peptidoglycans as promoters of slow- wave sleep. Journal of Biological Chemistry 259:12652–12658
    [Google Scholar]
  88. Matsuhashi M., Maruyama J. N., Takagaki Y., Tamaki S., Nishimura Y., Hirota Y. 1978; Isolation of a mutant of E. coli lacking penicillin-sensitive dalanyl carboxypeptidase la. Proceedings of the National Academy of Sciences of the United States of America 752631–2635
    [Google Scholar]
  89. Melly M. A., McGee Z. A., Rosenthal R. S. 1984; Ability of monomeric peptidoglycan fragments from Neisseria gonorrhoeae to damage human fallopian-tube mucosa. Journal of Infectious Diseases 149:378–386
    [Google Scholar]
  90. Mett H., Keck W., Funk A., Schwarz U. 1980; Two different species of murein transglycosylase in Escherichia coli . Journal of Bacteriology 144:45–52
    [Google Scholar]
  91. Mirelman D. 1979; Biosynthesis and assembly of cell wall peptidoglycan. In Bacterial Outer Membranes: Biogenesis and Functions115–166 Inouye M. New York: John Wiley;
    [Google Scholar]
  92. Mitchell P., Moyle J. 1957; Autolytic release and osmotic properties of ‘protoplasts’ from Staphylococcus aureus . Journal of General Microbiology 16:184–194
    [Google Scholar]
  93. Moyed H. S., Bertrand K. P. 1983; hipA a newly recognized gene of Escherichia coli K12 that affects frequency of persistence after inhibition of murein synthesis. Journal of Bacteriology 155:768–775
    [Google Scholar]
  94. Nanninga N. 1988; Growth and form in microorganisms: morphogenesis of Escherichia coli . Canadian Journal of Microbiology 34:381–389
    [Google Scholar]
  95. Norris V., Seror S. J., Casaregola S., Holland I. B. 1988; A single calcium flux triggers chromosome replication, segregation and septation in bacteria: a model. Journal of Theoretical Biology 134:341–350
    [Google Scholar]
  96. Parquet C., Flouret B., Leduc M., Hirota Y., van Heijenoort J. 1983; Nacetylmuramoyl-lalanine amidase of Escherichia coli K12 - possible physiological functions. European Journal of Biochemistry 133:371–377
    [Google Scholar]
  97. de Pedro M. A., Schwarz U. 1981; Heterogeneity of newly inserted and preexisting murein in the sacculus of Escherichia coli . Proceedings of the National Academy of Sciences of the United States of America 785856–5860
    [Google Scholar]
  98. de Pedro M. A., Schwarz U., Nishimura Y., Hirota Y. 1980; On the biological role of penicillin-binding proteins 4 and 5. FEMS Microbiology Letters 9:219–221
    [Google Scholar]
  99. Pelzer H. 1963a; Mucopeptidhydrolasen in Escherichia coli B. I. Nachweis und Wirkungsspezifität. Zeitschrift für Naturforschung 18b:950–956
    [Google Scholar]
  100. Pelzer H. 1963b; Mucopeptidhydrolasen in Escherichia coli B. II. Quantitative Bestimmungsverfahren und säulenchromatographische Trennung einiger Mucopeptidhydrolasen. Zeitschrift für Naturforschung 18b:956–964
    [Google Scholar]
  101. Pisabarro A. G., de Pedro M. A., Vazquez D. 1985; Structural modifications in the peptidoglycan of Escherichia coli associated with changes in the state of growth of the culture. Journal of Bacteriology 161:238–242
    [Google Scholar]
  102. Pisabarro A. G., de Pedro M. A., Ishiguro E. E. 1990; Dissociation of the ampicillin-induced lysis of amino acid-deprived Escherichia coli in two stages. Journal of Bacteriology 172:2187–2190
    [Google Scholar]
  103. del Portillo G. F., Pisabarro A. G., de la Rosa E. J., de Pedro M. A. 1987; Modulation of cell wall synthesis by DNA replication in Escherichia coli during initiation of cell growth. Journal of Bacteriology 169:2410–2416
    [Google Scholar]
  104. del Portillo G. F., de Pedro M. A., Joseleau-Petit D., D’Ari R. 1989; Lytic response of Escherichia coli cells to inhibitors of penicillin-binding proteins 1a and 1b as a timed event related to cell division. Journal of Bacteriology 171:4217–4221
    [Google Scholar]
  105. Prats R., de Pedro M. A. 1989; Normal growth and division of Escherichia coli with a reduced amount of murein. Journal of Bacteriology 171:3740–3745
    [Google Scholar]
  106. Pratt J. M., Jackson M. E., Holland I. B. 1986; The C-terminus of penicillin binding protein 5 is essential for localisation to the E. coli inner membrane. EMBO Journal 5:2394–2405
    [Google Scholar]
  107. Repaske R. 1958; Lysis of Gram-negative organisms and the role of versene. Biochimica et Biophysica Acta 30:225–232
    [Google Scholar]
  108. Roeder W., Somerville R. L. 1979; Cloning the trpR gene. Molecular and General Genetics 176:361–368
    [Google Scholar]
  109. Rogers H. J., Perkins H. R., Ward J. B. 1980 Microbial Cell Walls and Membranes London: Chapman and Hall;
    [Google Scholar]
  110. Rozeboom H. J., Dijkstra B. W., Engel H., Keck W. 1990; Crystallization of the soluble lytic transglycosylase from Escherichia coli K12. Journal of Molecular Biology 212:557–559
    [Google Scholar]
  111. Sanchez-Puelles J. M., Ronda C., Garcia J. L., Garcia P., Lopez R., Garcia E. 1986; Searching for autolysin functions -characterization of a pneumococcal mutant deleted in the lytA gene. European Journal of Biochemistry 158:289–293
    [Google Scholar]
  112. Schwarz U., Glauner B. 1988; Murein structure data and their relevance for the understanding of murein metabolism in Escherichia coli . In Antibiotic Inhibition of Bacterial Cell Surface Assembly and Function33–40 Actor P., Daneo-Moore L., Higgins M. L., Salton M. R. J., Shockman G. D. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  113. Schwarz U., Leutgeb W. 1971; Morphogenetic aspects of murein structure and biosynthesis. Journal of Bacteriology 106:588–595
    [Google Scholar]
  114. Schwarz U., Asmus A., Frank H. 1969; Autolytic enzymes and cell division of Escherichia coli . Journal of Molecular Biology 41:419–429
    [Google Scholar]
  115. Seidl P. H., Schleifer K. H. 1986 Biological Properties of Peptidoglycan Berlin New York: Walter de Gruyter;
    [Google Scholar]
  116. Shockman G. D., Pooley H. M., Thompson J. S. 1967; Autolytic enzyme system of Streptococcus faecalis . Journal of Bacteriology 94:1525–1530
    [Google Scholar]
  117. Sinha R. K., Rosenthal R. S. 1980; Release of soluble peptidoglycan from growing gonococci : demonstration of anhydro-muramyl-containing fragments. Infection and Immunity 29:914–925
    [Google Scholar]
  118. Spratt B. G., Strominger J. L. 1976; Identification of the major penicillin-binding proteins of Escherichia coli as dalanine carboxypeptidase IA. Journal of Bacteriology 127:660–663
    [Google Scholar]
  119. Tamaki S., Nakajima S., Matsuhashi M. 1977; Thermosensitive mutation in Escherichia coli simultaneously causing defects in penicillin-binding protein IBs and in enzyme activity for peptidoglycan synthesis in vitro . Proceedings of the National Academy of Sciences of the United States of America 745472–5476
    [Google Scholar]
  120. Tamura T., Imae Y., Strominger J. L. 1976; Purification to homogeneity and properties of two dalanine carboxypeptidase I from E. coli . Journal of Biological Chemistry 251:414–423
    [Google Scholar]
  121. Taylor A., Das B. C., van Heijenoort J. 1975; Bacterial-cell-wall peptidoglycan fragments produced by phage lambda or Vili endolysin and containing 1,6-anhydro-Nacetylmuramic acid. European Journal of Biochemistry 53:47–54
    [Google Scholar]
  122. Tipper D. J., Wright A. 1979; The structure and biosynthesis of bacterial cell walls. In The Bacteria 7 Mechanisms of Adaptation291–426 Gunsalus I. G., Sokatch J. R., Omston L. N. New York: Academic Press;
    [Google Scholar]
  123. Tomasz A. 1968; Biological consequences of the replacement of choline by ethanolamine in the cell wall of Pneumococcus : chain formation, loss of transformability and loss of autolysis. Proceedings of the National Academy of Sciences of the United States of America 5986–90
    [Google Scholar]
  124. Tomasz A. 1979; The mechanism of the irreversible antimicrobial effects of penicillins: how the betalactam antibiotics kill and lyse bacteria. Annual Review of Microbiology 33:113–137
    [Google Scholar]
  125. Tomasz A. 1983; Murein hydrolases - enzymes in search of a physiological function. In The Target of Penicillin155–172 Hakenbeck R., Höltje J.-V., Labischinski H. Berlin New York: Walter de Gruyter;
    [Google Scholar]
  126. Tomasz A. 1984; Building and breaking of bonds in the cell wall of bacteria - the role for autolysins. In Microbial Cell Wall Synthesis and Autolysis3–12 Nombela C. Amsterdam: Elsevier;
    [Google Scholar]
  127. Tomasz A., Höltje J.-V. 1977; Murein hydrolases and the lytic and killing action of penicillin. In Microbiology202–215 Schlesinger D. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  128. Tomasz A., McDonnell M., Westphal M., Zanati E. 1975; Coordinated incorporation of nascent peptidoglycan and teichoic acid into pneumococcal cell walls and conservation of peptidoglycan during growth. Journal of Biological Chemistry 250:337–341
    [Google Scholar]
  129. Tomasz A., Saukkonen K. 1989; The nature of cell wall-derived inflammatory components of pneumococci. Pediatric Infectious Disease Journal 8:902–903
    [Google Scholar]
  130. Tomasz A., Waks S. 1975; Enzyme replacement in a bacterium: phenotypic correction by the experimental introduction of the wild type enzyme into a live enzyme defective mutant Pneumococcus . Biochemical and Biophysical Research Communications 65:1311–1319
    [Google Scholar]
  131. Tomasz A., Albino A., Zanati E. 1970; Multiple antibiotic resistance in a bacterium with suppressed autolytic system. Nature; London: 227138–140
    [Google Scholar]
  132. Tomioka S., Matsuhashi M. 1978; Purification of penicillin-insensitive ddendopeptidase, a new cell wall peptidoglycan-hydrolyzing enzyme in Escherichia coli and its inhibition by deoxyribonucleic acids. Biochemical and Biophysical Research Communications 84:978–984
    [Google Scholar]
  133. Tomioka S., Nikaido T., Miyakawa T., Matsuhashi M. 1983; Mutation of the Nacetylmuramyl-lalanine amidase gene of Escherichia coli K-12. Journal of Bacteriology 156:463–465
    [Google Scholar]
  134. Tuomanen E. 1986; Newly made enzymes determine ongoing cell wall synthesis and the antibacterial effects of cell wall synthesis inhibitors. Journal of Bacteriology 167:535–543
    [Google Scholar]
  135. Tuomanen E., Cozens R. 1987; Changes in peptidoglycan composition and penicillin binding proteins in slowly growing Escherichia coli . Journal of Bacteriology 169:5308–5310
    [Google Scholar]
  136. Tuomanen E., Schwartz J. 1987; Penicillin binding protein 7 and its relationship to lysis of nongrowing Escherichia coli . Journal of Bacteriology 169:4912–4915
    [Google Scholar]
  137. Tuomanen E., Tomasz A. 1986; Induction of autolysis in nongrowing Escherichia coli . Journal of Bacteriology 167:1077–1080
    [Google Scholar]
  138. Tuomanen E., Tomasz A. 1990; The mechanism of phenotypic tolerance of nongrowing pneumococci to beta lactam antibiotics. Scandinavian Journal of Infectious DiseasesDecember106–112
    [Google Scholar]
  139. Tuomanen E., Cozens R., Tosch W., Zak O., Tomasz A. 1986a; The rate of killing of Escherichia coli by beta lactam antibiotics is strictly proportional to the rate of bacterial growth. Journal of General Microbiology 132:1297–1304
    [Google Scholar]
  140. Tuomanen E., Durack D. T., Tomasz A. 1986b; Antibiotic tolerance among clinical isolates of bacteria. Antimicrobial Agents and Chemotherapy 30:521–527
    [Google Scholar]
  141. Tuomanen E., Gilbert K., Tomasz A. 1986c; Modulation of bacteriolysis by cooperative effects of penicillin binding proteins 1a and 3 in Escherichia coli . Antimicrobial Agents and Chemotherapy 30:659–663
    [Google Scholar]
  142. Tuomanen E., Hengstler B., Zak O., Tomasz A. 1986d; Induction of meningeal inflammation by diverse bacterial cell walls. European Journal of Clinical Microbiology 5:682–684
    [Google Scholar]
  143. Tuomanen E., Markiewicz Z., Tomasz A. 1988a; Autolysis-resistant peptidoglycan of anomalous composition in amino-acid-starved Escherichia coli . Journal of Bacteriology 170:1373–1376
    [Google Scholar]
  144. Tuomanen E., Pollack H., Parkinson A., Davidson M., Facklam R., Rich R., Zak O. 1988b; Microbiological and clinical significance of a new property of defective lysis in clinical strains of pneumococci. Journal of Infectious Diseases 158:36–43
    [Google Scholar]
  145. Tuomanen E., Schwartz J., Sande S. 1990; The vir locus affects the response of Bordetella pertussis to antibiotics: phenotypic tolerance and control of autolysis. Journal of Infectious Diseases 162:560–563
    [Google Scholar]
  146. Valinger Z., Ladesic B., Tomasic J. 1982; Partial purification and characterization of Nacetylmuramyl-lalanine amidase from human and mouse serum. Biochimica et Biophysica Acta 701:63–71
    [Google Scholar]
  147. Vanderwinkel E., de Vlieghere M. 1985; Modulation of Escherichia coli Nacetylmuramoyl-lalanine amidase activity by phosphatidylglycerol. Biochimica et Biophysica Acta 838:54–59
    [Google Scholar]
  148. Vanderwinkel E., de Vlieghere M., de Tanhoffer de Volcsey L. 1981; Activity of Nacetylmuramoyl-lalanine amidase in phospholipidic environments. Biochimica et Biophysica Acta 663:46–57
    [Google Scholar]
  149. Vanderwinkel E., de Vlieghere M., Charles P., Baptist V. 1987; Nature of the interactions involved in the lipid-protein complexes of the Escherichia coli Nacetylmuramoyl-L-alanine amidase. Biochimica et Biophysica Acta 913:238–244
    [Google Scholar]
  150. Walderich B., Höltje J.-V. 1989; Specific localization of the lysis protein of bacteriophage MS2 in membrane adhesion sites of Escherichia coli . Journal of Bacteriology 171:3331–3336
    [Google Scholar]
  151. Walderich B., Ursinus-Wössner A., van Duin J., Höltje J.-V. 1988; Induction of the autolytic system of Escherichia coli by specific insertion of bacteriophage MS2 lysis protein into the bacterial cell envelope. Journal of Bacteriology 170:5027–5033
    [Google Scholar]
  152. Weidel W., Pelzer H. 1964; Bag-shaped macromolecules - a new outlook on bacterial cell walls. Advanced Enzymology 26:193–232
    [Google Scholar]
  153. Woldringh C. L., Huls P., Pas E., Brakenhoff G. J., Nanninga N. 1987; Topography of peptidoglycan synthesis during elongation and polar cap formation in a cell division mutant of Escherichia coli MC4100. Journal of General Microbiology 133:575–586
    [Google Scholar]
  154. Wolf-Watz H., Normark S. 1976; Evidence for a role of N acetylmuramyl-Lalanine amidase in septum separation in Escherichia coli . Journal of Bacteriology 128:580–586
    [Google Scholar]
  155. Yem D. W., Wu H. C. 1976a; Purification and properties of β Nacetylglucosaminidase from Escherichia coli . Journal of Bacteriology 125:324–331
    [Google Scholar]
  156. Yem D. W., Wu H. C. 1976b; Isolation of Escherichia coli K-12 mutants with altered levels of β Nacetylglucosaminidase. Journal of Bacteriology 125:372–373
    [Google Scholar]
  157. Yocum R. R., Waxman D. J., Strominger J. L. 1980; Interaction of penicillin with its receptors in bacterial membranes. Trends in Biochemical Sciences 5:97–101
    [Google Scholar]
  158. Young K. D., Anderson R. J., Hafner R. J. 1989; Lysis of Escherichia coli by the bacteriophage ϕX174 E protein : inhibition of lysis by heat shock proteins. Journal of Bacteriology 171:4334–4341
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-3-441
Loading
/content/journal/micro/10.1099/00221287-137-3-441
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error