1887

Abstract

The gene from A054, a commercial yogurt strain, was cloned on a 7·2 kb I fragment in and compared with the previously cloned gene from ATCC 19258. Using the dideoxy chain termination method, the DNA sequences of both structural genes were determined and found to be 3071 bp in length. When the two sequences were more closely analysed, 21 nucleotide differences were detected, of which only nine resulted in amino acid changes in the proteins, the remainder occurring in wobble positions of the respective codons. Only three bases separated the termination codon for the gene from the initiation codon for , suggesting that the lactose utilization genes are organized as an operon. The amino acid sequence of the -galactosidase, derived from the DNA sequence, corresponds to a protein with a molecular mass of 116860 Da. Comparison of the amino acid sequences with those from and showed 48, 35 and 32·5% identity respectively. Although little sequence homology was observed at the DNA level, many regions conserved in the amino acid squence were identified when the -galactosidase proteins from and were compared.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-2-369
1991-02-01
2021-07-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/2/mic-137-2-369.html?itemId=/content/journal/micro/10.1099/00221287-137-2-369&mimeType=html&fmt=ahah

References

  1. Alpert C. A., Chassy B. M. 1988; Molecular cloning and nucleotide sequence of the factor IIIlac gene of Lactobacillus casei . Gene 62:277–288
    [Google Scholar]
  2. Andrews J., Clore G. M., Davies R. W., Gronenborn A. M., Gronenborn B., Kalderon D., Papadopoulos P. C, Schafer S., Sims P. F. C., Stancombe R. 1985; Nucleotide sequence of the dihydrofolate reductase gene of methotrexate-resistant Lactobacillus casei . Gene 35:217–222
    [Google Scholar]
  3. Appleyard R. K. 1954; Segregation of new lysogenic types during growth of a doubly lysogenic strain derived from Escherichia coli K12. Genetics 39:440–452
    [Google Scholar]
  4. Bankier A. T., Barrell B. G. 1983; Techniques in the life sciences, B5. In Nucleic Acids Biochemistry B5081–34 Shannon, Ireland: Elsevier Scientific Publishers;
    [Google Scholar]
  5. Boizet B., Villeval D., Slos P., Novel M., Mercenier A. 1988; Isolation and structural analysis of the phospho-βgalactosidase gene from Streptococcus lactis Z268. Gene 62:249–261
    [Google Scholar]
  6. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C, Heynecker H. L., Boyer H. W. 1977; Construction and characterization of new cloning vehicles. II. A multi-purpose cloning system. Gene 2:95–113
    [Google Scholar]
  7. Bullock W. O., Fernandez J. M., Short J. M. 1987; XL-1 Blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. BioTechniques 5:376–378
    [Google Scholar]
  8. Buvinger W. E., Riley M. 1985; Nucleotide sequence of Klebsiella pneumoniae genes. Journal of Bacteriology 163:850–857
    [Google Scholar]
  9. Chou P. Y., Fasman G. D. 1974; Prediction of protein conformation. Biochemistry 13:222–245
    [Google Scholar]
  10. Crow V. L., Thomas T. D. 1984; Properties of a Streptococcus lactis strain that ferments lactose slowly. Journal of Bacteriology 157:28–34
    [Google Scholar]
  11. Dao M. L., Ferretti J. J. 1985; Streptococcus-Escherichia coli shuttle vector pSA3 and its use in the cloning of streptococcal genes. Applied and Environmental Microbiology 49:115–119
    [Google Scholar]
  12. Demerec M., Adelberg E. A., Clark A. J., Hartman P. E. 1966; A proposal for a uniform nomenclature in bacterial genetics. Genetics 54:61–76
    [Google Scholar]
  13. DeVos W. M., Simons G. 1988; Molecular cloning of lactose genes in dairy lactic streptococci: the phospho-βgalactosidase and βgalactosidase genes and their expression products. Biochimie 70:461–473
    [Google Scholar]
  14. DeVos W. M., Vos P., Simons G., David S. 1989; Gene organization and expression in mesophilic lactic acid bacteria. Journal of Dairy Science 72:3398–3405
    [Google Scholar]
  15. Elliker P. R., Anderson A. W., Hannesson G. 1956; An agar culture medium for lactic acid streptococci and lactobacilli. Journal of Dairy Science 89:1611–1612
    [Google Scholar]
  16. Farrow J. A. E., Collins M. D. 1984; DNA base composition, DNA-DNA homology and long chain fatty acid studies on Streptococcus thermophilus and Streptococcus salivarius . Journal of General Microbiology 130:357–362
    [Google Scholar]
  17. Fowler A. V., Zabin I., Sinnett M. L., Smith P. J. 1978; Methionine 500, the site of covalent attachment of an active site-directed reagent of βgalactosidase. Journal of Biological Chemistry 253:5283–5285
    [Google Scholar]
  18. Gasson M. 1987; Streptococcal cloning vectors (Appendix A). In Streptococcal Genetics273 Ferretti J. J., Curtiss R. III Washington, DC: American Society for Microbiology;
    [Google Scholar]
  19. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. Journal of Molecular Biology 166:557–580
    [Google Scholar]
  20. Henikoff S. 1984; Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359
    [Google Scholar]
  21. Herman R. E., McKay L. L. 1986; Cloning and expression of the β dgalactosidase gene from Streptococcus thermophilus in Escherichia coli . Applied and Environmental Microbiology 52:45–50
    [Google Scholar]
  22. Herman R. E., Schroeder C. J., McKay L. L. 1987; Characterization of plasmids and cloning of the βgalactosidase gene from Streptococcus thermophilus . In Streptococcal Genetics225–228 Ferretti J. J., Curtiss R. III Washington DC: American Society for Microbiology;
    [Google Scholar]
  23. Herrchen M., Legler G. 1984; Identification of an essential carboxylate group at the active site of the lacZ βgalactosidase from Escherichia coli . European Journal of Biochemistry 138:527–531
    [Google Scholar]
  24. Holmes D. S., Quigley M. 1981; A rapid boiling method for the preparation of bacterial plasmids. Analytical Biochemistry 114:193–197
    [Google Scholar]
  25. Kalnins A., Otto K., Ruther U., Muller-Hill B. 1983; Sequence of the lacZ gene of Escherichia coli . EMBO Journal 2:593–597
    [Google Scholar]
  26. Kieny M. P., Lathe R., Lecocq J. P. 1983; New versatile cloning and sequence vectors based on bacteriophage M13. Gene 26:91–99
    [Google Scholar]
  27. Kilpper-Balz R., Fischer G., Schleifer K. H. 1982; Nucleic acid hybridization of group N and group D streptococci. Current Microbiology 7:245–250
    [Google Scholar]
  28. Kondo J. K., McKay L. L. 1982; Transformation of Streptococcus lactis protoplasts by plasmid deoxyribonucleic acid. Applied and Environmental Microbiology 43:1213–1215
    [Google Scholar]
  29. Kyte J., Doolittle R. F. 1982; A method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–132
    [Google Scholar]
  30. Larson R., Messing J. 1982; Apple II software for M13 shotgun DNA sequencing. Nucleic Acids Research 10:39–49
    [Google Scholar]
  31. Macrina F. L, Evans R. P., Tobian J. A., Hartley D. L., Clewell D. B., Jones K. R. 1983; Novel shuttle plasmid vehicles for Escherichia-Streptococcus transgenic cloning. Gene 25:145–150
    [Google Scholar]
  32. Mandecki W., Fowler A. V., Zabin I. 1981; Position of the lacZ x 90 mutation and hybridization between complete and incomplete βgalactosidase. Journal of Bacteriology 147:694–697
    [Google Scholar]
  33. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. McKay L. L., Baldwin K. A., Walsh P. M. 1980; Conjugal transfer of genetic information in group N streptococci. Applied and Environmental Microbiology 40:84–91
    [Google Scholar]
  35. Mercenier A., Lemoine Y. 1989; Genetics of Streptococcus thermophilus: a review. Journal of Dairy Science 72:3444–3454
    [Google Scholar]
  36. Mercenier A., Robert C, Romero D. A., Castellino I., Silos P., Lemoine Y. 1988; Development of an efficient spheroplast transformation procedure for Streptococcus thermophilus: the use of transfection to define a regeneration medium. Biochimie 70:567–577
    [Google Scholar]
  37. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Naider F., Bohak Z., Yariv J. 1972; Reversible alkylation of a methionyl residue near the active site of βgalactosidase. Biochemistry 11:3202–3207
    [Google Scholar]
  39. Poolman B., Royer T. J., Mainzer S. E., Schmidt B. F. 1989; Lactose transport system of Streptococcus thermophilus: a hybrid protein with homology to the melibiose carrier and enzyme III of phosphoenolpyruvate-dependent phosphotransferase systems. Journal of Bacteriology 171:244–253
    [Google Scholar]
  40. Poolman B., Royer T. J., Mainzer S. E., Schmidt B. F. 1990; Carbohydrate utilization in Streptococcus thermophilus: characterization of the genes for aldolase 1-epimerase (mutarotase) and UDPglucose 4-epimerase. Journal of Bacteriology 172:4037–4047
    [Google Scholar]
  41. Porter E. V., Chassy B. M. 1988; Nucleotide sequence of the β dphosphogalactoside galactohydrolase gene of Lactobacillus casei: comparison to analogous pbg genes of other Gram-positive organisms. Gene 62:263–276
    [Google Scholar]
  42. Rosenberg M., Court D. 1979; Regulatory sequences involved in the promotion and termination of RN A transcription. Annual Review of Genetics 13:319–353
    [Google Scholar]
  43. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 745463–5467
    [Google Scholar]
  44. Schmidt B. F., Adams R. M., Requadt C., Power S., Mainzer S. E. 1989; Expression and nucleotide sequence of the Lactobacillus bulgaricus βgalactosidase gene cloned in Escherichia coli . Journal of Bacteriology 171:625–635
    [Google Scholar]
  45. Somkuti G. A., Steinberg D. M. 1979; βdGalactoside galactohydrolase of Streptococcus thermophilus: induction, purification and properties. Journal of Applied Biochemistry 1:357–368
    [Google Scholar]
  46. Southern E. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  47. Stormo G. D., Schneider T. D., Gold L. M. 1982; Characterization of translational initiation sites in E coli . Nucleic Acids Research 10:2971–2995
    [Google Scholar]
  48. Tabor S., Richardson C. C. 1987; DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proceedings of the National Academy of Sciences of the United States of America 844767–4771
    [Google Scholar]
  49. Terzaghi B. K., Sandine N. R. 1975; Improved medium for lactic streptococci and their bacteriophages. Applied and Environmental Microbiology 29:807–813
    [Google Scholar]
  50. Thomas P. S. 1980; Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proceedings of the National Academy of Sciences of the United States of America 77:5201–5205
    [Google Scholar]
  51. Van der Vossen J. M. B. M., Van der Lelie D., Venema G. 1987; Isolation and characterization of Streptococcus cremoris Wg2-specific promoters. Applied and Environmental Microbiology 53:2452–2457
    [Google Scholar]
  52. Winberg G., Hammerskjola M. L. 1980; Isolation of DNA from agarose gels using DEAE-paper. Applications to restriction site mapping of adenovirus type 16 DNA. Nucleic Acids Research 8:253–264
    [Google Scholar]
  53. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-2-369
Loading
/content/journal/micro/10.1099/00221287-137-2-369
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error