1887

Abstract

Summary

The bialaphos resistance gene, , was used as a selectable marker to isolate the bialaphos production genes () from the genome. The gene was cloned on overlapping restriction fragments using pIJ680 and pIJ702 in the bialaphos-sensitive host, . Although the restriction endonuclease cleavage map of these fragments was not similar to the cluster of , the presence and location of and four other genes as well as a gene required for the transcriptional activation of the cluster () was demonstrated by heterologous cloning experiments using a series of previously characterized bialaphos-nonproducing mutants. Since recombination-deficient mutants of streptomycetes have not been isolated, restored function provided by cloned homologous DNA results from both recombination (marker rescue) and complementation . In contrast to our previously reported homologous cloning experiments where we were able to define the position of mutant alleles by recombination, in these heterologous cloning experiments we observed little if any recombination between plasmid-cloned genes and the chromosome. As a result, this approach allowed us to define the location and orientation of functional genes using a genetic complementation test. The organization of the clustered genes was indistinguishable from the corresponding mutant alleles. The fact that the transcriptional regulatory gene, , functioned in implied that some transcriptional regulatory signals may also be interchangeable. In these two species, which have considerable nucleotide sequence divergence, the complex biochemical and genetic organization of the bialaphos biosynthetic pathway is conserved.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-2-351
1991-02-01
2021-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/2/mic-137-2-351.html?itemId=/content/journal/micro/10.1099/00221287-137-2-351&mimeType=html&fmt=ahah

References

  1. Albright L. M., Huala E., Ausubel F. M. 1989; Prokaryotic signal transduction mediated by sensor and regulatory protein pairs. Annual Review of Genetics 23:311–336
    [Google Scholar]
  2. Anzai H., Murakami R., Imai S., Satoh A., Nagaoka K., Thompson C. J. 1987; Transcriptional regulation of bialaphos biosynthesis in Streptomyces hygroscopicus. Journal of Bacteriology 169:3482–3488
    [Google Scholar]
  3. Bayer E., Gugel K. H., Hagele K., Hagenmaier H., Jessipow S., Koning W. A., Zahner H. 1972; Stoffwechselprodukte von Mikroorganismen. Phosphinothricin und Phosphinothricyl-alanyl-alanine. Helvetica Chimica Ada 55:224–239
    [Google Scholar]
  4. Bibb M. J., Biro S., Motamedi H., Collins J. F., Hutchinson C. R. 1989; Analysis of the nucleotide sequence of the Streptomyces glaucescens tcml genes provides key information about the enzymology of polyketide biosynthesis. EMBO Journal 8:2727–2736
    [Google Scholar]
  5. Chater K. F., Bruton C. J. 1985; Resistance, regulatory and production genes for the antibiotic methylenomycin are clustered. EMBO Journal 4:1893–1897
    [Google Scholar]
  6. Distler J., Ebert A., Mansouri K., Pissowotzki K., Stockmann M., Pipersberg W. 1987; Gene cluster for streptomycin biosynthesis in Streptomyces griseus: nucleotide sequence of three genes and analysis of transcriptional activity. Nucleic Acids Research 15:8041–8056
    [Google Scholar]
  7. Gross R., Arico B., Rappuoli R. 1989; Families of bacterial signal-transducing proteins. Molecular Microbiology 3:1661–1667
    [Google Scholar]
  8. Hara O., Anzai H., Imai S., Kumada Y., Murakami T., Itoh R., Takano E., Satoh A., Nagaoka K. 1988; The bialaphos biosynthetic genes of Streptomyces hygroscopicus: cloning and analysis of the genes involved in the alanylation step. Journal of Antibiotics 41:538–547
    [Google Scholar]
  9. Hidaka T., Seto H., Imai S. 1989; Biosynthetic mechanism of C-P bond formation. Isolation of carboxyphosphonoenolpyruvate and its conversion to phosphinopyruvate. Journal of the American Chemical Society 111:8012–8013
    [Google Scholar]
  10. Hopwood D. A., Bibb M. J., Chater K. F., Kieser T., Bruton C. J., Kieser H. M., Lydiate D. J., Smith C. P., Ward J. M., Schrempf H. 1985; Genetic Manipulation of Streptomyces. A Laboratory Manual. Norwich, UK: The John Innes Foundation;
    [Google Scholar]
  11. Imai S., Seto H., Sasaki T., Turuoka T., Ogawa H., Satoh A., Inouye S., Niida T., Otake N. 1984; Studies on the biosynthesis of bialaphos (SF1293). 4. Production of phosphonic acid derivatives 2-hydroxyethylphosphonic acid, hydroxymethyl-phosphonic acid and phosphonoformic acid by blocked mutants of Streptomyces hygroscopicus SF-1293 and their roles in the biosynthesis of bialaphos. Journal of Antibiotics 37:1505–1508
    [Google Scholar]
  12. Imai S., Seto H., Sasaki T., Tsuruoka T., Ogawa H., Satoh A., Inouye S., Niida T., Otake N. 1985; Studies on the biosynthesis of bialaphos (SF1293). 6. Production of N-acetylde-methylphosphinothricin and N-acetylbialaphos by blocked mutants of Streptomyces hygroscopicus SF-1293 and their roles in the biosynthesis of bialaphos. Journal of Antibiotics 38:687–690
    [Google Scholar]
  13. Janssen G. R., Ward J. M., Bibb M. J. 1989; Unusual transcriptional and translational features of the aminoglycoside phosphotransferase gene (aph) from Streptomyces fradiae. Genes and Development 3:415–429
    [Google Scholar]
  14. Katz E., Thompson C. J., Hopwood D. A. 1983; Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans . Journal of General Microbiology 129:2703–2714
    [Google Scholar]
  15. Kondo Y., Shomura T., Ogawa Y., Tsuruoka T., Watanabe H., Totsukawa K., Suzuki T., Moriyama C, Yoshida J., Inouye S., Niida T. 1973; Studies of a new antibiotic SF1293.1. Isolation and physicochemical and biological characterization of SF1293 substances. Science Reports of Meiji Seika Kaisha 13:34–41
    [Google Scholar]
  16. Kumada Y., Anzai H., Takano E., Murakami T., Hara O., Itoh R., Imai S., Sato A., Nagaoka K. 1988; The bialaphos resistance gene (bar) plays a role in both self-defense and bialaphos biosynthesis, in Streptomyces hygroscopicus . Journal of Antibiotics 41:1838–1845
    [Google Scholar]
  17. Leu W.-M., Wu S.-Y., Lin J.-J., Szecheng J. L., Lee Y.-H. W. 1989; Analysis of the promoter region of the melanin locus from Streptomyces antibioticus . Gene 84:267–277
    [Google Scholar]
  18. Lomovskaya N. D., Mkrtumian N. M., Gostimskaya N. L., Danilenko V. N. 1972; Characterization of the temperate actinophage 0C31 isolated from Streptomyces coelicolor A3(2). Journal of Virology 9:258–262
    [Google Scholar]
  19. Malpartida F., Hopwood D. A. 1984; Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host. Nature; London: 309462–464
    [Google Scholar]
  20. Murakami T., Anzai H., Imai S., Satoh A., Nagaoka K., Thompson C. J. 1986; The bialaphos biosynthetic genes of Streptomyces hygroscopicus: molecular cloning of the gene cluster. Molecular and General Genetics 205:42–50
    [Google Scholar]
  21. Ogawa H., Imai S., Satoh A., Koiima M. 1983a; An improved method for the preparation of Streptomyces and Micromonospora protoplasts. Journal of Antibiotics 36:184–186
    [Google Scholar]
  22. Ogawa H., Imai S., Shimizu T. S., Satoh A., Kojima M. 1983b; Cosynthesis and protoplast fusion by mutants of bialaphos (AMPBA) producing Streptomyces hygroscopicus . Journal of Anti-biotics 36:1040–1044
    [Google Scholar]
  23. Omura S., Hinotozawa K., Imamura N., Murata M. 1984; The structure of phosalacine, a new herbicidal antibiotic containing phosphinothricin. Journal of Antibiotics 37:939–940
    [Google Scholar]
  24. Seno E. T., Baltz R. H. 1989; Structural organization and regulation of antibiotic biosynthesis and resistance genes in actinomycetes. In Regulation of Secondary Metabolism in Actinomycetes1–48 Shipiro S. Boca Ration, Fla.: CRC Press;
    [Google Scholar]
  25. Seno E. T., Bruton C. J., Chater K. F. 1984; The glycerol utilization operon of Streptomyces coelicolor: genetic mapping of gyl mutations and the analysis of cloned gyl DNA. Molecular and General Genetics 193:119–128
    [Google Scholar]
  26. Seto H., Imai S., Tsuruoka T., Ogawa H., Satoh A., Sasaki T., Otake N. 1983a; Studies on the biosynthesis of bialaphos (SF-1293). 3. Production of phosphinic acid derivatives, MP-103, MP-0104, and MP-105, by a blocked mutant of Streptomyces hygroscopi-cus SF-1293 and their roles in the biosynthesis of bialaphos. Biochemical and Biophysical Research Communications 111:1008–1014
    [Google Scholar]
  27. Seto H., Sasaki T., Imai S., Tsuruoka T., Ogawa H., Satoh A., Inouye S., Niida T., Otake N. 1983b; Studies on the biosynthesis of bialaphos (SF-1293). 2. Isolation of the first natural products with C-P-H bond and their involvement in the C-P-C bond formation. Journal of Antibiotics 36:96–98
    [Google Scholar]
  28. Seto H., Imai S., Sasaki T., Shimotohno K., Tsuruoka T., Ogawa H., Satoh A., Inouye S., Niida T., Otake N. 1984; Studies on the biosynthesis of bialaphos (SF-1293). 5. Production of 2-phosphinomethylmalic acid, an analogue of citric acid, by Streptomyces hygroscopicus SF-1293 and its involvement in the biosynthesis of bialaphos. Journal of Antibiotics 37:1509–1511
    [Google Scholar]
  29. Sherman D. H., Malpartida F., Bibb M. J., Kieser H., Bibb M. J., Hopwood D. A. 1989; Structure and deduced function of the granaticin-producing polyketide synthetase gene cluster of Streptomyces violaceoruber Tii22. EM BO Journal 8:2717–2725
    [Google Scholar]
  30. Shimotohno K., Seto H., Otake N., Imai S., Satoh A. 1986; Studies on the biosynthesis of bialaphos (SF-1293). 7. The absolute configuration of 2-phosphinomethylmalic acid, a biosynthetic intermediate of bialaphos. Journal of Antibiotics 39:1356–1359
    [Google Scholar]
  31. Smith D. J., Burnham M. K. R., Bull J. H., Hodgson J. E., Ward J. M., Browne P., Brown J., Barton B., Earl A. J., Turner G. 1990; β-Lactam antibiotic biosynthetic genes have been conserved in clusters in prokaryotes and eukaryotes. EMBO Journal 9:741–747
    [Google Scholar]
  32. Stock J. B., Stock A. M., Mottonen J. M. 1990; Signal transduction in bacteria. Nature; London: 344395–400
    [Google Scholar]
  33. Strauch E., Wohlleben W., Puhler A. 1988; Cloning of a phosphinothricin N-acetyltransferase gene from Streptomyces viri-dochromogenes Tu494 and its expression in Streptomyces lividans and Escherichia coli . Gene 63:65–74
    [Google Scholar]
  34. Thompson C. J., Movva N. R., Tizard R., Crameri R., Davies J. E., Lauwereys M., Botterman J. 1987; Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus . EMBO Journal 6:2519–2523
    [Google Scholar]
  35. Vogtli M., Hutter R. 1987; Characterisation of the hydroxy-streptomycin phosphotransferase gene (sph) of Streptomyces glauces-cens: nucleotide sequence and promoter analysis. Molecular and General Genetics 208:195–203
    [Google Scholar]
  36. Ward J. M., Janssen G. R., Kieser T., Bibb M. J., Buttner M. J., Bibb M. J. 1986; Construction and characterisation of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Molecular and General Genetics 203:468–475
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-2-351
Loading
/content/journal/micro/10.1099/00221287-137-2-351
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error