
Full text loading...
The immediate effects of externally added alcohols on CO2 production and O2 consumption of suspensions of washed, aerated baker’s yeast were studied by stopped-flow membrane inlet mass spectrometry. Glucose-supported fermentation was progressively inhibited by increasing ethanol concentration (0–20%, v/v). The inhibition by ethanol was quite different from that observed for acetaldehyde; thus it is unlikely that toxicity of the latter can account for the observed effects. For five different alkanols (methanol, ethanol, 1-propanol, 2-propanol and 1-butanol) increasing inhibition of anaerobic fermentation was correlated with increased partition coefficients into a hydrophobic milieu. This suggests that the action of ethanol is primarily located at a hydrophobic site, possibly at a membrane. Results for respiratory activities were not as definite as for those for anaerobic metabolism because some alkanols act as respiratory substrates as well as giving inhibitory effects.
Article metrics loading...
Full text loading...
References
Data & Media loading...