1887

Abstract

The chemotactic response of wild-type and , and a phenotypic variant of each species, to mycelial exudate was examined. Both , the bacterium responsible for initiating basidiome development of , and , the causal organism of bacterial blotch disease of the mushroom, displayed a positive chemotactic response to Casamino acids and to mycelial exudate. The response was both dose- and time-dependent and marked differences were observed between the response time of the wild-type strains and their phenotypic variants. Phenotypic variants responded rapidly to both attractants and reached a maximum response after 10–20 min, whereas the wild-types took 45–60 min. The differences are partly explained by the more rapid swimming speed of the phenotypic variants. Both variants responded maximally to similar concentrations of Casamino acids and mycelial exudates. Investigations into the nature of the attractants contained in the mycelial exudate indicated that they are predominantly small ( < 2000) thermostable compounds. Sugars present in the exudate did not elicit a chemotactic response in any isolate, but a mixture of 14 amino acids detected in the exudate accounted for between 50 and 75% of the chemotactic response of the fungal exudate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-12-2761
1991-12-01
2021-05-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/12/mic-137-12-2761.html?itemId=/content/journal/micro/10.1099/00221287-137-12-2761&mimeType=html&fmt=ahah

References

  1. Adler J. 1973; A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli . Journal of General Microbiology 74:77–91
    [Google Scholar]
  2. Ames P., Bergman K. 1981; Competitive advantage provided by bacterial motility in the formation of nodules by Rhizobium meliloti . Journal of Bacteriology 148:728–729
    [Google Scholar]
  3. Arora O. H., Filonow A. B., Lockwood J. L. 1983; Bacterial chemotaxis to fungal propagules in vitro and in soil. Canadian Journal of Microbiology 29:1104–1109
    [Google Scholar]
  4. Bashan Y. 1986; Migration of the rhizosphere bacteria Azospirillum brasilense and Pseudomonas fluorescens towards wheat roots in the soil. Journal of General Microbiology 132:3407–3414
    [Google Scholar]
  5. Brodey C. L., Rainey P. B., Tester M., Johnstone K. 1991; Bacterial blotch disease of the cultivated mushroom is caused by an ion-channel forming lipodepsipeptide toxin. Molecular Plant-Microbe Interactions 4:407–411
    [Google Scholar]
  6. Chet I., Mitchell R. 1976; Ecological aspects of microbial chemotactic behaviour. Annual Review of Microbiology 30:221–240
    [Google Scholar]
  7. Chet I., Fogel S., Mitchell R. 1971; Chemical detection of microbial prey by bacterial predators. Journal of Bacteriology 106:863–867
    [Google Scholar]
  8. Churms S. C. 1982; CRC Handbook of Chromatography. 1 Carbohydrates Boca Raton, Florida: CRC Press;
    [Google Scholar]
  9. Claydon N. 1985; Secondary metabolic products of selected agarics. Developmental Biology of Higher Fungi (British Mycological Society Symposium 10)561–579 Moore D., Casselton L. A., Wood D. A., Frankland J. C. Cambridge: Cambridge University Press;
    [Google Scholar]
  10. Cuppels D. A. 1988; Chemotaxis by Pseudomonas syringae pv. tomato . Applied and Environmental Microbiology 54:629–632
    [Google Scholar]
  11. Currier W. C., Strobel G. A. 1977; Chemotaxis of Rhizobium spp. to a glycoprotein produced by birdsfoot trefoil roots. Science 196:434–435
    [Google Scholar]
  12. Cutri S. S., Macauley B. J., Roberts W. P. 1984; Characteristics of pathogenic non-fluorescent (smooth) and non-pathogenic fluorescent (rough) forms of Pseudomonas tolaasii and Pseudomonas gingeri . Journal of Applied Bacteriology 57:291–298
    [Google Scholar]
  13. De Weger L. A., Van der Vlugt C. I. M., Wijfjes A. H. M., Barker P. A. H. M., Schippers B., Lugtenberg B. 1987; Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. Journal of Bacteriology 169:2769–2773
    [Google Scholar]
  14. Eger E. 1961; Untersuchungen über die Funktion der Deckschicht bei der Fruchtkorperbildung des Kulturchampignons, Psalliota bispora Lge. Archiv für Microbiologie 39:313–334
    [Google Scholar]
  15. Gafny R., Okon Y., Kapulnik Y. 1986; Adsorption of Azospirillum brasilense to corn roots. Soil Biology and Biochemistry 18:69–75
    [Google Scholar]
  16. Gerwe P. G., Rudolph K., Kohn S. 1987; Vergleich eines glatten und eines rauhen Stammes von Pseudomonas syringae pv. phaseolicola . Journal of Phytopathology 118:326–334
    [Google Scholar]
  17. Gitte R., Rai P., Patil R. R. 1978; Chemotaxis of Rhizobium spp. towards root exudates of Cicer arietinum . Plant and Soil 50:553–556
    [Google Scholar]
  18. Govan J. R. W., Harris G. S. 1986; Pseudomonas aeruginosa and cystic fibrosis : unusual bacterial adaptation and pathogenesis. Microbiological Sciences 3:302–308
    [Google Scholar]
  19. Grant W. D., Fermor T. R., Wood D. A. 1984; Degradation of bacterial cell walls by bacteriolytic enzymes produced during growth of the mycelium of Agaricus bisporus on Bacillus subtilis . Journal of General Microbiology 130:761–769
    [Google Scholar]
  20. Griffin D. M., Quail G. 1968; Movement of bacteria in moist particulate systems. Australian Journal of Biological Sciences 21:579–582
    [Google Scholar]
  21. Harwood C. S., Rivelli M., Ornston L. N. 1984; Aromatic acids are chemoattractants for Pseudomonas putida . Journal of Bacteriology 160:622–628
    [Google Scholar]
  22. Harwood C. S., Fosnaugh K., Dispensa M. 1989; Flagellation of Pseudomonas putida and analysis of its motile behaviour. Journal of Bacteriology 171:4063–4066
    [Google Scholar]
  23. Hayes W. A., Nair N. G. 1976; Effects of volatile metabolic byproducts of mushroom mycelium on the ecology of the casing layer. Mushroom Science 9:259–268
    [Google Scholar]
  24. Hayes W. A., Randle P. E., Last F. P. 1969; The nature of the microbial stimulus affecting sporophore formation in Agaricus bisporus (Lang) Sing. Annals of Applied Biology 64:177–187
    [Google Scholar]
  25. Heinrich D., Hess D. 1985; Chemotactic attraction of Azospirilluni lipoferum by wheat roots and characterization of some attractants. Canadian Journal of Microbiology 31:26–31
    [Google Scholar]
  26. Kamoun S., Kado C. I. 1990; Phenotypic switching affecting chemotaxis, xanthan production, and virulence in Xanthomonas campestris . Applied and Environmental Microbiology 56:3855–3860
    [Google Scholar]
  27. Kelman A. 1954; The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on tetrazolium medium. Phytopathology 44:693–695
    [Google Scholar]
  28. Kelman A., Hruschka J. 1973; The role of motility and aerotaxis in the selective increase of avirulent bacteria in still broth cultures of Pseudomonas solanacearum . Journal of General Microbiology 76:177–188
    [Google Scholar]
  29. Khalil O., Gray T. R. G. 1986; Chemotaxis of Bacillus subtilis to fungal exudates and to the individual amino acid components in fungal exudates. Arabian Gulf Journal of Scientific Research 4:599–609
    [Google Scholar]
  30. King E. O., Ward M. K., Raney D. C. 1954; Two simple media for the demonstration of pyocyanin and fluorescin. Journal of Laboratory and Clinical Medicine 44:301–307
    [Google Scholar]
  31. Lim W. C., Lockwood J. L. 1988; Chemotaxis of some phytopathogenic bacteria to fungal propagules in vitro and in soil. Canadian Journal of Microbiology 34:196–199
    [Google Scholar]
  32. Lockwood J. L. 1968; The fungal environment of soil bacteria. The Ecology of Soil Bacteria44–65 Gray T. R. G., Parkinson D. Liverpool: Liverpool University Press;
    [Google Scholar]
  33. Lynch W. H. 1980; Effect of temperature on Pseudomonas fluorescens chemotaxis. Journal of Bacteriology 143:338–342
    [Google Scholar]
  34. Madsen E. L., Alexander M. 1982; Transport of Rhizobium and Pseudomonas through soil. Journal of the Soil Science Society of America 46:557–560
    [Google Scholar]
  35. McCoy E. L., Hagedorn C. 1979; Quantitatively tracing bacterial transport in saturated soil systems. Water, Air and Soil Pollution 11:467–479
    [Google Scholar]
  36. Miles A. A., Misra S. S. 1938; The estimation of the bactericidal power of the blood. Journal of Hygiene 38:732–749
    [Google Scholar]
  37. Moulton R. C., Montie T. C. 1985; Chemotaxis by Pseudomonas aeruginosa . Journal of Bacteriology 137:274–280
    [Google Scholar]
  38. Nelson J. W., Tredgett M. W., Sheehan J. K., Thornton D. J., Notman D., Govan J. R. W. 1990; Mucinophilic and chemotactic properties of Pseudomonas aeruginosa in relation to pulmonary colonization in cystic fibrosis. Infection and Immunity 58:1489–1495
    [Google Scholar]
  39. Nutkins J. C., Mortishire-Smith R. J., Packman L. C., Brodey C. L., Rainey P. B., Johnstone K., Williams D. H. 1991; Structure determination of tolaasin, an extracellular lipodepsipeptide produced by the mushroom pathogen Pseudomonas tolaasii Paine. Journal of the American Chemical Society 113:2621–2627
    [Google Scholar]
  40. Peng J. T. 1986; Resistance to disease in Agaricus bisporus (Lange) Imbach. PhD thesis, University of Leeds
    [Google Scholar]
  41. Poole P. S., Sinclair D. R., Armitage J. P. 1988; Real time computer-tracking of free-swimming and tethered rotating cells. Analytical Biochemistry 175:52–58
    [Google Scholar]
  42. Rainey P. B. 1989a; The involvement of Pseudomonas putida in the process of basidiome initiation of the cultivated mushroom, Agaricus bisporus. PhD thesis, University of Canterbury New Zealand:
    [Google Scholar]
  43. Rainey P. B. 1989b; A new laboratory medium for the cultivation of Agaricus bisporus . New Zealand Natural Sciences 16109–112
    [Google Scholar]
  44. Rainey P. B. 1991a; Effect of Pseudomonas putida on hyphal growth of Agaricus bisporus . Mycological Research 95:699–704
    [Google Scholar]
  45. Rainey P. B. 1991b; Phenotypic variation of Pseudomonas putida and P. tolaasii affects attachment to Agaricus bisporus mycelium. Journal of General Microbiology 137:2769–2779
    [Google Scholar]
  46. Rainey P. B., Cole A. L. J., Fermor T. R., Wood D. A. 1990; A model system for examining the involvement of bacteria in basidiome initiation of Agaricus bisporus . Mycological Research 94:191–195
    [Google Scholar]
  47. Rainey P. B., Brodey C. L., Johnstone K. 1991; Biological properties and spectrum of activity of tolaasin, a lipodepsipeptide toxin produced by the mushroom pathogen Pseudomonas tolaasii . Physiological and Molecular Plant Pathology 39:57–70
    [Google Scholar]
  48. Scher F., Kloepper J., Singleton C. 1985; Chemotaxis of fluorescent Pseudomonas spp. to soybean exudates in vitro and in soil. Canadian Journal of Microbiology 31:570–574
    [Google Scholar]
  49. Siala A., Gray T. R. G. 1974; Growth of Bacillus subtilis and spore germination in soil observed by a fluorescent-antibody technique. Journal of General Microbiology 81:191–198
    [Google Scholar]
  50. Smith I. (editor) 1960; Chromatographic and Electrophoretic Techniques. 1 Chromatography London: Heinemann;
    [Google Scholar]
  51. Tolaas A. G. 1915; A bacterial disease of cultivated mushrooms. Phytopathology 551–54
    [Google Scholar]
  52. Van der Drift C., De Jong M. H. 1974; Chemotaxis towards amino acids in Bacillus subtilis . Archives of Microbiology 96:83–92
    [Google Scholar]
  53. Wong W. C., Preece T. F. 1979; Identification of Pseudomonas tolaasii: the white line in agar and mushroom tissue block rapid pitting tests. Journal of Applied Bacteriology 47:401–407
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-12-2761
Loading
/content/journal/micro/10.1099/00221287-137-12-2761
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error