1887

Abstract

Monoclonal antibody (mAb) probes were used to investigate the expression of lipopolysaccharide (LPS) on four strains, grown under a variety of conditions in batch culture which mimicked some of the environmental conditions of an infected host. Techniques of silver staining, immunoblotting, whole cell ELISA and flow cytometry were all used to monitor the expression of LPS on the bacteria and the binding of the anti-LPS mAbs. Growth in heat-inactivated sheep serum and magnesium-depleted conditions demonstrated increased expression of LPS core and subsequent increased binding of anti-core mAbs. Magnesium-depleted conditions also resulted in decreased production of O-polysaccharide material. Iron-depleted bacteria showed only minor changes in LPS expression, although increased binding of anti-core mAbs was observed. Nitrogen-deficient/high-carbon conditions, chosen to promote capsule production, resulted in increased expression of O-polysaccharide and decreased binding of anti-core mAbs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-12-2741
1991-12-01
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/12/mic-137-12-2741.html?itemId=/content/journal/micro/10.1099/00221287-137-12-2741&mimeType=html&fmt=ahah

References

  1. Aydintung M. K., Inzana T. J., Letonja T., Davis W. C., Corbeil L. B. 1989; Cross-reactivity of monoclonal antibodies to Escherichia coli J5 with heterologous Gram negative bacteria and extracted lipopolysaccharides. Journal of Infectious Diseases 160:846–857
    [Google Scholar]
  2. Brown M. R. W., Williams P. 1985; The influence of environment on envelope properties affecting survival of bacteria in infections. Annual Review of Microbiology 39:527–556
    [Google Scholar]
  3. Chedid L., Parant M., Parant F., Boyer F. 1968; A proposed mechanism for natural immunity to enterobacterial pathogens. Journal of Immunology 100:292–301
    [Google Scholar]
  4. Chia S. K. S., Pollack M., Guelde G., Koles N. L., Miller M., Evans M. E. 1989; Lipopolysaccharide(LPS)-reactive monoclonal antibodies fail to inhibit LPS-induced tumor necrosis factor secretion by mouse-derived macrophages. Journal of Infectious Diseases 159:872–880
    [Google Scholar]
  5. Costerton J. W., Ingram J. M., Chang K. J. 1974; Structure and function of the cell envelope of Gram-negative bacteria. Bacteriological Reviews 38:87–110
    [Google Scholar]
  6. Cross A. S., Kim K. S., Wright D. C., Sadoff J. C., Gemski P. 1986; Role of lipopolysaccharide and capsule in serum resistance of bacteremic strains of Escherichia coli . Journal of Infectious Diseases 154:497–503
    [Google Scholar]
  7. Day D. F., Marceau-Day M. L. 1982; Lipopolysaccharide variability in Pseudomonas aeruginosa . Current Microbiology 7:93–98
    [Google Scholar]
  8. Dodds K. L., Perry M. M., McDonald I. J. 1987; Alterations in the lipopolysaccharide produced by chemostat-grown Escherichia coli 0157:H7 as a function of growth rate and growth-limiting nutrient. Canadian Journal of Microbiology 33:452–458
    [Google Scholar]
  9. Dunn D. L., Ewald D. C., Chandan N., Cerra F. B. 1986; Immunotherapy of Gram negative bacterial sepsis. Archives of Surgery 121:58–62
    [Google Scholar]
  10. Gigliotti F., Shenep J. L. 1985; Failure of monoclonal antibodies to core glycolipid to bind intact smooth strains of Escherichia coli . Journal of Infectious Diseases 151:1005–1011
    [Google Scholar]
  11. Griffiths E. 1987; The iron uptake systems of pathogenic bacteria. Iron and Infection - Molecular, Physiological and Clinical Aspects69–138 Bullen J. J., Griffiths E. Chichester: John Wiley;
    [Google Scholar]
  12. Hancock I. C., Poxton I. R. 1988 Bacterial Cell Surface Techniques Chichester: John Wiley;
    [Google Scholar]
  13. Harder W., Dijkhuizen L. 1983; Physiological responses to nutrient limitation. Annual Review of Microbiology 37:1–23
    [Google Scholar]
  14. Heumann D., Baumgartner J. D., Jacot-Guillarmod H., Glauser M. P. 1991; Antibodies to core lipopolysaccharide determinants: absence of cross-reactivity with heterologous lipopolysaccharide. Journal of Infectious Diseases 163:762–768
    [Google Scholar]
  15. Hitchcock P. J., Brown T. M. 1983; Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. Journal of Bacteriology 154:269–277
    [Google Scholar]
  16. Hoekstra D., Van der Laan J. W., De Leu L., Wit B. 1976; Release of outer membrane fragments from normally growing Escherichia coli . Biochimica et Biophysica Acta 455:889–899
    [Google Scholar]
  17. De Jongh-Leuvenink J., Schellekens J., Verhoef J. 1990; Characterization of anti-core glycolipid monoclonal antibodies with chemically defined lipopolysaccharides. Infection and Immunity 58:421–426
    [Google Scholar]
  18. Kelly N. M., Bell A., Hancock R. E. W. 1989; Surface characteristics of Pseudomonas aeruginosa grown in a chamber implant model in mice and rats. Infection and Immunity 57:344–350
    [Google Scholar]
  19. Kipps T. J., Hertzenberg L. A. 1986; Schemata for production of monoclonal antibody-producing hybridomas. Handbook of Experimental Immunology108.1–108.9 Weir D. M. Oxford: Blackwell;
    [Google Scholar]
  20. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature London: 227680–685
    [Google Scholar]
  21. Leying H., Suerbaum S., Kroll H-P., Stahl D., Opferkuch W. 1990; The capsular polysaccharide is a major determinant of serum resistance in K-l-positive blood culture isolates of Escherichia coli . Infection and Immunity 58:222–227
    [Google Scholar]
  22. McGroarty E. J., Rivera M. 1990; Growth-dependent alteration in production of serotype-specific and common antigen lipopolysaccharides In Pseudomonas aeuruginosa PAO1. Infection and Immunity 57:1030–1037
    [Google Scholar]
  23. Mayoral J. L., Dunn D. L. 1990; Cross-reactive murine monoclonal antibodies directed against the core/lipid A region of endotoxin inhibit production of tumor necrosis factor. Journal of Surgical Research 49:287–292
    [Google Scholar]
  24. Meers J. L., Tempest D. W. 1968; The influence of extracellular products on the behaviour of mixed microbial populations in magnesium-limited chemostat cultures. Journal of General Microbiology 52:309–317
    [Google Scholar]
  25. Morse S. A., Mintz C. S., Sanfia S. K., Bauertenstein L., Bortram M., Arcella M. A. 1983; Effect of dilution rate on lipopolysaccharide and serum resistance of Neisseria gonorrhoeae grown in continuous culture. Infection and Immunity 41:74–82
    [Google Scholar]
  26. Neilands J. B. 1982; Microbial envelope proteins related to iron. Annual Review of Microbiology 36:285–309
    [Google Scholar]
  27. Nelson D., Neill W., Poxton I. R. 1990; A comparison of immunoblotting, flow cytometry and ELISA to monitor the binding of anti-lipopolysaccharide monoclonal antibodies. Journal of Immun-ological Methods 133:227–233
    [Google Scholar]
  28. Pollack NI, Chia J. K. S., Koles N. L., Miller M., Guelde G. 1989; Specificity and cross-reactivity of monoclonal antibodies reactive with core and lipid A regions of bacterial lipopolysaccharide. Journal of Infectious Diseases 159:168–184
    [Google Scholar]
  29. Robert-Gero M., Poiret M., Cohen G. N. 1970; The aspartate kinase of Pseudomonas putida regulation of synthesis and activity. Biochimica et Biophysica Ada 206:17–30
    [Google Scholar]
  30. Ryan J. L. 1985; Microbial factors in pathogenesis: lipopolysaccharides. Septic Shock (Contemporary Issues in Infectious Diseases)13–25 Root K., Sande M. A. New York: Churchill Livingstone;
    [Google Scholar]
  31. Scott B. B., Barclay G. R. 1987; Endotoxin-polymyxin complexes in an improved enzyme-linked immunosorbent assay for IgG antibodies in blood-donor sera to Gram-negative endotoxin core glycolipids. Vox Sanguinis 52:272–280
    [Google Scholar]
  32. Smith A. W., Wilton J., Clark S. A., Alpar O., Melling J., Brown M. R. W. 1991; Production and characterization of monoclonal antibodies to outer membrane proteins of Pseudomonas aeruginosa grown in iron depleted media. Journal of General Microbiology 137:227–236
    [Google Scholar]
  33. Sutherland I. W., Wilkinson J. F. 1965; Depolymerases for bacterial exopolysaccharides obtained from phage-infected bacteria. Journal of General Microbiology 39:373–383
    [Google Scholar]
  34. Taylor P. W., Messner P., Parton R. 1981; Effect of the growth environment on cell-envelope components of Escherichia coli in relation to sensitivity to human serum. Journal of Medical Microbiology 14:9–19
    [Google Scholar]
  35. Terry J. M., Pina S. E., Mattingly S. J. 1991; Environmental conditions which influence mucoid conversion In Pseudomonas aeruginosa PAOl. Infection and Immunity 59:471–477
    [Google Scholar]
  36. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets : procedure and some applications. Proceedings of the National Academy of Sciences of the United States of America 764350–4354
    [Google Scholar]
  37. Tsai C.-M., Frasch C. E. 1982; A sensitive silver stain for detecting lipopolysaccharide in polyacrylamide gels. Analytical Biochemistry 119:115–119
    [Google Scholar]
  38. Williams P., Lambert P. A., Brown M. R. W. 1988; Penetration of immunoglobulins through the Klebsiella capsule and their effect on cell-surface hydrophobicity. Journal of Medical Microbiology 26:29–35
    [Google Scholar]
  39. Ziegler E. J., Fisher C. J., Sprung C. L., Straube R. C., Sadoff J. C., Foulke G. E., Wortel C. H. 1991; Treatment of Gram-negative bacteremia and septic shock with HA-IA human monoclonal antibody against endotoxin. New England Journal of Medicine 324:429–436
    [Google Scholar]
/content/journal/micro/10.1099/00221287-137-12-2741
Loading
/content/journal/micro/10.1099/00221287-137-12-2741
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error