Transformation and allelic replacement in Francisella spp. Free

Abstract

We describe methods for transposon mutagenesis and allelic replacement in the facultative intracellular pathogen . Recombinant clones were constructed by insertion of partially cut or DNA into pUC19 and then mutagenized with a mini-Tn-Km transposon. could be transformed with these plasmids either by a chemical transformation method or by electroporation, whereas could be transformed only by electroporation. Transformation of by electroporation was enhanced in the absence of the capsule. Southern blot analysis showed that the Km marker was rescued either by integration of the plasmid into the chromosome or by allelic replacement. Allelic replacement was found to be the mechanism underlying a site-specific mutation affecting FopA, an outer-membrane protein of could also be transformed with chromosomal DNA carrying the Km marker and the transformation frequency obtained using chromosomal DNA was generally greater than that obtained using plasmid DNA. was also transformed by an IncQ plasmid containing an DNA insert, which replicated autonomously in this host.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-12-2697
1991-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/12/mic-137-12-2697.html?itemId=/content/journal/micro/10.1099/00221287-137-12-2697&mimeType=html&fmt=ahah

References

  1. Allen W. P. 1961; Immunity against tularemia : passive protection of mice by transfer of immune tissues. Journal of Experimental Medicine 115:411–420
    [Google Scholar]
  2. Anthony L. S. D., Kongshavn P. A. L. 1987; Experimental murine tularemia caused by Francisella tularensis live vaccine strain : a model of acquired cellular resistance. Microbial Pathogenesis 2:3–14
    [Google Scholar]
  3. Anthony L. S. D., Ghadirian E., Nestel F. P., Kongshavn P. A. L. 1989; The requirement for gamma interferon in resistance of mice to experimental tularemia. Microbial Pathogenesis 7:421–428
    [Google Scholar]
  4. Bell J. F. 1981; Francisella. Handbuch der Bakteriellen Infektionen bei Tieren172–256 Blobel H., Schliber T. Jena: Veb Gustav Fisher Verlag;
    [Google Scholar]
  5. Bevanger L., Maeland L. A., Naess A. T. 1988; Agglutinins and antibodies to Francisella tularensis outer membrane antigens in the early diagnosis of disease during an outbreak of tularemia. Journal of Clinical Microbiology 26:433–437
    [Google Scholar]
  6. Chamberlain R. E. 1965; Evaluation of live tularemia vaccine prepared in a chemically defined medium. Applied Microbiology 13:232–235
    [Google Scholar]
  7. Dreyfuss G., Adam S. A., Choi Y. D. 1984; Physical change in cytoplasmic messenger ribonucleoproteins in cells treated with inhibitors of mRNA transcription. Molecular and Cellular Biology 4:415–423
    [Google Scholar]
  8. Eigelsbach H. T., Downs C. M. 1961; Prophylactic effectiveness of live and killed tularemia vaccines. I. Production of vaccine and evaluation in the white mouse and guinea pig. Journal of Immunology 87:415–425
    [Google Scholar]
  9. Eigelsbach H. T., Hunter D. H., Janssen W. A., Dangerfield H. G., Rabinowitz S. G. 1975; Murine model for study of cell-mediated immunity: protection against death from fully virulent Francisella tularensis infection. Infection and Immunity6 12:999–1005
    [Google Scholar]
  10. Eigelsbach H. T., McGann V. G. 1984; Francisella. Bergey’s Manual of Systematic Bacteriology 1394–399 Krieg W. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  11. Elhai J., Wolk C. P. 1988; A versatile class of positive-selection vectors based on the nonviability of palindrome-containing plasmids that allows cloning into long polylinkers. Gene 68:119–138
    [Google Scholar]
  12. Goodman S. D., Scocca J. J. 1988; Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae . Proceedings of the National Academy of Sciences of the United States of America 856982–6986
    [Google Scholar]
  13. Hollis D. G., Weaver R. E., Steigerwalt A. G., Wenter J. D., Moss C. W., Brenner D. J. 1989; Francisellaphilomiragia comb. nov. (formerly Yersinia philomiragia) and Francisella tularensis biogroup novicida (formerly Francisella novicida) associated with human disease. Journal of Clinical Microbiology 27:1601–1608
    [Google Scholar]
  14. Keen N. T., Tamaki S., Kobayashi D., Trollinger D. 1988; Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 70:191–197
    [Google Scholar]
  15. Kostiala A. A. I., McGregor D. D., Logie P. S. 1975; Tularemia in the rat. I. The cellular basis of host resistance to infection. Immunology 28:855–869
    [Google Scholar]
  16. Larson C. L., Wicht W., Jellison W. L. 1955; A new organism resembling F. tularensis isolated from water. Public Health Reports 70:253–258
    [Google Scholar]
  17. Mandel M., Higa A. 1970; Calcium-dependent bacteriophage DNA infection. Journal of Molecular Biology 53:159–162
    [Google Scholar]
  18. Nano F. E. 1988; Identification of a heat-modifiable protein of Francisella tularensis and molecular cloning of the encoding gene. Microbial Pathogenesis 5:109–119
    [Google Scholar]
  19. Owen C. R., Buker E. O., Jellison W. L., Lackman D. B., Bell J. F. 1964; Comparative studies of Francisella tularensis and Francisella novicida . Journal of Bacteriology 87:676–683
    [Google Scholar]
  20. Sambrook J., Fritsch E. E., Maniatis T. 1989 Molecular Cloning, 2. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Sandström G., Lofgren S., Tarnvik A. 1988; A capsule-deficient mutant of Francisella tularensis LVS exhibits enhanced sensitivity to killing by serum but diminished sensitivity to killing by polymorphonuclear leukocytes. Infection and Immunity 56:1194–1202
    [Google Scholar]
  22. Sisco K. L., Smith H. O. 1979; Sequence-specific DNA uptake in Haemophilus transformation. Proceedings of the National Academy of Sciences of the United States of America 76972–976
    [Google Scholar]
  23. Tyeryar F. J., Lawton W. D. 1969; Transformation of Pasteurella novicida . Journal of Bacteriology 100:1112–1113
    [Google Scholar]
  24. Tyeryar F. J., Lawton W. D. 1970; Factors affecting transformation of Pasteurella novicida . Journal of Bacteriology 104:1312–1317
    [Google Scholar]
  25. Vieira J., Messing J. 1982; The pUC plasmids, an M13mp7- derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268
    [Google Scholar]
  26. Way J. C., Davis M. A., Morisato D., Roberts D. E., Kleckner N. 1984; New Tn10 derivatives for transposon mutagenesis and for constructing of lacZ operon fusions by transposition. Gene 32:369–379
    [Google Scholar]
  27. Wang Y., Taylor D. E. 1990; Natural transformation in Campylobacter species. Journal of Bacteriology 172:949–955
    [Google Scholar]
  28. Wenger J. D., Hollis D. G., Weaver R. E., Baker C. N., Brown G. R., Brenner D. J., Broome C. V. 1989; Infection caused by Francisella philomiragia (formerly Yersinia philomiragia). Annals of Internal Medicine 110:888–892
    [Google Scholar]
  29. Wilson K. 1987; Preparation of genomic DNA from bacteria. Current Protocols in Molecular Biology2.4.1–2.4.5 Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: John Wiley;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-12-2697
Loading
/content/journal/micro/10.1099/00221287-137-12-2697
Loading

Data & Media loading...

Most cited Most Cited RSS feed