Regulation of compatible solute accumulation in : evidence for a glycine betaine efflux system Free

Abstract

The regulation of glycine betaine accumulation has been investigated in The size of the glycine betaine pool in the cells is determined by the external osmotic pressure and is largely independent of the external glycine betaine concentration. Analysis of the activity of the ProP and ProU transport systems suggests that other systems must be active in the regulation of the glycine betaine pool. Addition of -chloromercuribenzoate (PCMB) or -chloromercuribenzene sulphonate (PCMBS) to cells that have accumulated glycine betaine provokes rapid loss of glycine betaine. The route of glycine betaine efflux under the influence of PCMB is independent of either the ProP or ProU transport systems. Rapid loss of the accumulated pool of glycine betaine in the presence of PCMB is specific to glycine betaine and proline; accumulated pools of serine and lysine are not significantly affected by the –SH reagent. A specific glycine betaine/proline efflux system is postulated on the basis of these data and its role in the regulation of glycine betaine and proline accumulation is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-11-2617
1991-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/11/mic-137-11-2617.html?itemId=/content/journal/micro/10.1099/00221287-137-11-2617&mimeType=html&fmt=ahah

References

  1. Barker E. P., Booth I. R., Dinnbier U., Epstein W., Gajewska A. 1987; Evidence for multiple potassium export systems in Escherichia coli. Journal of Bacteriology 169:3743–3749
    [Google Scholar]
  2. Booth I. R. 1988; Control of proton permeability: its implications for energy transduction and pH homeostasis. FEMS Symposium 44:1–12
    [Google Scholar]
  3. Booth I. R., Hamilton W. A. 1980; Quantitative analysis of proton-linked transport system: β-galactoside exit in Escherichia coli. Biochemical Journal 188:467–473
    [Google Scholar]
  4. Booth I. R., Cairney J., Sutherland L., Higgins C. F. 1988; Enteric bacteria and osmotic stress: an integrated homeostatic system. Journal of Applied Bacteriology Symposium Supplement35S–49S
    [Google Scholar]
  5. Cairney J., Booth I. R., Higgins C. F. 1985a; Salmonella typhimurium proP gene encodes a transport system for the osmo- protectant glycine betaine. Journal of Bacteriology 164:1218–1223
    [Google Scholar]
  6. Cairney J., Booth I. R., Higgins C. F. 1985b; Osmoregulation of gene expression in Salmonella typhimurium: proU encodes an osmotically-induced glycine betaine transport system. Journal of Bacteriology 164:1224–1232
    [Google Scholar]
  7. Csonka L. N. 1982; A third L-proline permease in Salmonella typhimurium which functions in media of elevated osmotic strength. Journal of Bacteriology 151:1433–1443
    [Google Scholar]
  8. Csonka L. N. 1988; Regulation of cytoplasmic proline levels in Salmonella typhimurium: effect of osmotic stresses on synthesis, degradation and cellular retention of proline. Journal of Bacteriology 170:2374–2378
    [Google Scholar]
  9. Csonka L. N. 1989; Physiological and genetic responses of bacteria to osmotic stress. Microbiology Reviews 53:121–147
    [Google Scholar]
  10. Dinnbier U., Limpinsel E., Schmid R., Bakker E. P. 1988; Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K12 to elevated sodium chloride concentrations. Archives of Microbiology 150:348–357
    [Google Scholar]
  11. Driessen A. J. M., Konings W. N. 1990; Reactive exofacial sulphydryl groups on the arginine–ornithine antiporter of Lactococcus lactis. Biochimica et Biophysica Acta 1015:87–95
    [Google Scholar]
  12. Elmore M. J., Lamb A. J., Ritchie G. Y., Douglas R. M., Munro A. W., Gajewska A., Booth I. R. 1990; Activation of potassium efflux from Escherichia coli by glutathione metabolites. Molecular Micriobiology 4:405–412
    [Google Scholar]
  13. Epstein W. 1986; Osmoregulation of potassium transport in Escherichia coli. FEMS Microbiology Reviews 39:73–78
    [Google Scholar]
  14. Faatz E., Middendorf A., Bremer E. 1988; Cloned structural genes for the osmotically regulated binding-protein-dependent glycine betaine transport system (ProU) of Escherichia coli K-12. Molecular Microbiology 2:265–279
    [Google Scholar]
  15. Imhoff J. F. 1986; Osmoregulation and compatible solutes in eubacteria. FEMS Microbiology Reviews 39:57–66
    [Google Scholar]
  16. Larson P. L., Sydnes L. K., Landfald B., Strom A. R. 1987; Osmoregulation in Escherichia coli by accumulation of organic osmolytes: betaines, glutamic acid and trehalose. Archives of Microbiology 147:1–7
    [Google Scholar]
  17. Meury J., Robin A., Kepes A. 1985; Turgor-controlled K+ fluxes and their pathways in Escherichia coli. European Journal of Biochemistry 151:613–619
    [Google Scholar]
  18. Milner J. L., Grothe S., Wood J. M. 1988; Proline porter II is activated by a hyperosmotic shift in both whole cells and membrane vesicles of Escherichia coli K.12. Journal of Biological Chemistry 263:14900–14905
    [Google Scholar]
  19. Perroud B., Le Rudulier D. 1985; Glycine betaine transport in Escherichia coli: osmotic modulation. Journal of Bacteriology 161:393–401
    [Google Scholar]
  20. Pollard A., Wyn Jones R. G. 1979; Enzyme activities in concentrated solutions of glycine betaine and other solutes. Planta 144:291–298
    [Google Scholar]
  21. Rhoads D. B., Epstein W. 1978; Cation transport in Escherichia coli. IX. Regulation of potassium transport. Journal of General Physiology 72:283–295
    [Google Scholar]
  22. Riou N., Le Rudulier D. 1990; Osmoregulation in Azospirillum brasilense: glycine betaine transport enhances growth and nitrogen fixation under salt stress. Journal of General Microbiology 136:1455–1461
    [Google Scholar]
  23. Roth W. G., Leckie M. P., Dietzler D. N. 1984; Osmotic stress drastically inhibits active transport of carbohydrates by Escherichia coli. Biochemical and Biophysical Research Communications 126:442–449
    [Google Scholar]
  24. Stirling D. A., Hulton C. S. J., Waddell L., Park S. F., Stewart G. S. A. B., Booth I. R., Higgins C. F. 1989; Molecular characterisation of the proU loci of Salmonella typhimurium and Escherichia coli: the osmoregulated glycine betaine transport systems. Molecular Microbiology 3:1025–1038
    [Google Scholar]
  25. Styrvold O. B., Strom A. R. 1991; Synthesis, accumulation, and excretion of trehalose in osmotically-stressed Escherichia coli K-12 strains: influence of amber suppressors and function of the periplasmic trehalase. Journal of Bacteriology 173:1187–1192
    [Google Scholar]
  26. West I. C., Mitchell P. 1973; Stoichiometry of lactose-proton symport across the plasma membrane of Escherichia coli. Biochemical Journal 132:587–592
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-11-2617
Loading
/content/journal/micro/10.1099/00221287-137-11-2617
Loading

Data & Media loading...

Most cited Most Cited RSS feed