1887

Abstract

Thirty-six ruminant isolates of , previously classified as invasive or non-invasive in a mouse model of virulence, were compared by analysing I restriction patterns of the major outer-membrane protein (MOMP) gene after DNA amplification by the polymerase chain reaction. The 24 invasive isolates, although from various origins, all belonged to serotype 1 and represented a strictly homogeneous group sharing a specific MOMP-gene restriction pattern that was not observed in the non-invasive strains. On the other hand, the 12 non-invasive strains, although all belonging to serotype 2, constituted a heterogeneous group with eight distinct MOMP-gene restriction patterns. However, all eight patterns shared a 180 bp fragment or the corresponding restricted fragments of 110 and 70 bp. MOMP-gene restriction patterns also clearly distinguished the ruminant strains from an avian isolate, a isolate and two isolates which were studied for comparison. The homogeneous character of the invasive strains argues strongly for their genetic relatedness. Our results illustrate the usefulness of the MOMP-gene restriction mapping in typing chlamydiae.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-11-2525
1991-11-01
2021-07-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/11/mic-137-11-2525.html?itemId=/content/journal/micro/10.1099/00221287-137-11-2525&mimeType=html&fmt=ahah

References

  1. Allan I., Pearce J. H. 1983; Amino acid requirements of strains of Chlamydia trachomatis and C. psittaci growing in McCoy cells: relationship with clinical syndrome and host origin. Journal of General Microbiology 129:2001–2007
    [Google Scholar]
  2. Andersen A. A. 1991a; Comparison of avian Chlamydia psittaci isolates by restriction endonuclease analysis and serovar-specific monoclonal antibodies. Journal of Clinical Microbiology 29:244–249
    [Google Scholar]
  3. Andersen A. A. 1991b; Serotyping of Chlamydia psittaci isolates using serovar-specific monoclonal antibodies with the microimmunofluorescence test. Journal of Clinical Microbiology 29:707–711
    [Google Scholar]
  4. Andersen A. A., Van Deusen R. 1988; Production and partial characterization of monoclonal antibodies to four Chlamydia psittaci isolates. Infection and Immunity 56:2075–2079
    [Google Scholar]
  5. Baghian A., Shaffer L., Storz J. 1990; Antibody response to epitopes of chlamydial major outer membrane proteins on infectious elementary bodies and of the reduced polyacrylamide gel electro-phoresis-separated form. Infection and Immunity 58:1379–1383
    [Google Scholar]
  6. Banks J. B., Eddie J., Schachter J., Meyer K. F. 1970; Plaque formation by Chlamydia in L cells. Infection and Immunity 1:259–262
    [Google Scholar]
  7. Buzoni-Gatel D., Layachi K., Rodolakis A. 1989; Comparison of protein patterns between invasive and non-invasive ovine strains of Chlamydia psittaci . Research in Veterinary Science 46:40–42
    [Google Scholar]
  8. Campbell L. A., Kuo C. C., Grayston J. T. 1987; Characterization of the new Chlamydia agent, TWAR, as a unique organism by restriction endonuclease analysis and DNA-DNA hybridization. Journal of Clinical Microbiology 25:1911–1916
    [Google Scholar]
  9. Carter M. W., Al-Mahdawi S. A. H., Giles I. G., Treharne J. D., Ward M. E., Clarke I. N. 1991; Nucleotide sequence and taxonomic value of the major outer membrane protein gene of Chlamydia pneumoniae IOL-207. Journal of General Microbiology 137:465–475
    [Google Scholar]
  10. Cox R. L., Kuo C. C., Grayston T., Campbell L. A. 1988; Deoxyribonucleic acid relatedness of Chlamydia sp. strain TWAR to Chlamydia trachomatis and Chlamydia psittaci . International Journal of Systematic Bacteriology 38:265–268
    [Google Scholar]
  11. Dutilh B., Bebear C., Rodriguez P., Vekris A., Bonnet J., Garret M. 1989; Specific amplification of a DNA sequence common to all Chlamydia trachomatis serovars using the polymerase chain reaction. Research Microbiology 140:7–16
    [Google Scholar]
  12. Eb F., Orfila J. 1982; Serotyping of Chlamydia psittaci by the micro-immunofluorescence test : isolates of ovine origin. Infection and Immunity 45:1289–1291
    [Google Scholar]
  13. Eb F., Orfila J., Milon A., Geral M. F. 1986; Intérêt épidémiologique du typage par immunofluorescence de Chlamydia psittaci . Annales de l’Institut Pasteur/Microbiologie 137B:77–93
    [Google Scholar]
  14. Frost E. H., Deslandes S., Bourgaux-Ramoisy D. 1990; Typing Chlamydia isolates with the polymerase chain reaction. In Chlamydial Infections, Proceedings of the 7th International Symposium on Human Chlamydial Infections499–502 Bowie W. R., Caldwell H. D., Jones R. P., Mardh P., Ridgway G. L., Schachter J., Stamm W. E., Ward M. E. Cambridge: Cambridge University Press;
    [Google Scholar]
  15. Fukushi H., Nojiri K., Hirai K. 1987; Monoclonal antibody typing of Chlamydia psittaci strains derived from avian and mammalian species. Journal of Clinical Microbiology 25:1978–1981
    [Google Scholar]
  16. Fukushi H., Hirai K. 1988; Immunochemical diversity of the major outer membrane protein of avian and mammalian Chlamydia psittaci . Journal of Clinical Microbiology 26:675–680
    [Google Scholar]
  17. Fukushi H., Hirai K. 1989; Genetic diversity of avian and mammalian Chlamydia psittaci strains and relation to host origin. Journal of Bacteriology 171:2850–2855
    [Google Scholar]
  18. Girjes A. A., Hugall A. F., Timms P., Lavin M. F. 1988; Two distinct forms of Chlamydia psittaci associated with disease and infertility in Phascolarctos cinereus (koala). Infection and Immunity 56:1897–1900
    [Google Scholar]
  19. Grayston J. T., Kuo C. C., Campbell L. A., Wang S. P. 1989; Chlamydia pneumoniae sp. nov. for Chlamydia sp. strain TWAR. International Journal of Systematic Bacteriology 39:88–90
    [Google Scholar]
  20. Herring A. J., Tan T. W., Baxter S., Inglis N. F., Dunbar S. 1989; Sequence analysis of the major outer membrane protein gene of an ovine abortion strain of Chlamydia psittaci . FEMS Microbiology Letters 65:153–158
    [Google Scholar]
  21. Herring A. J., Tan T. W., Baxter S. 1990; Chlamydial abortion in sheep : molecular approaches to vaccination, pathogen detection and strain typing. In Chlamydial Infections, Proceedings of the 7th International Symposium on Human Chlamydial Infections378–382 Bowie W. R., Caldwell H. D., Jones R. P., Mardh P., Ridgway G. L., Schachter J., Stamm W. E., Ward M. E. Cambridge: Cambridge University Press;
    [Google Scholar]
  22. Holland S. M., Gaydos C. A., Quinn T. C. 1990; Detection and differentiation of Chlamydia trachomatis Chlamydia psittaci and Chlamydia pneumoniae by DNA amplification. Journal of Infectious Diseases 162:984–987
    [Google Scholar]
  23. Kingsbury D. T., Weiss E. 1968; Lack of deoxyribonucleic acid homology between species of the genus Chlamydia . Journal of Bacteriology 96:1421–1423
    [Google Scholar]
  24. Madeley G. R. 1977; Guide pour le prélèvement et le transport des échantillons dans les maladies à virus, Rickettsiae et Chlamydiae . Organisation Mondiale de la Santé; Genève:
    [Google Scholar]
  25. McClenaghan M., Herring A. J., Aitken I. D. 1984; Comparison of Chlamydia psittaci isolates by DNA restriction endonuclease analysis. Infection and Immunity 45:384–389
    [Google Scholar]
  26. McClenaghan M., Honeycombe J. R., Bevan B. J., Herring A. J. 1988; Distribution of plasmid sequences in avian and mammalian strains of Chlamydia psittaci . Journal of General Microbiology 134:559–565
    [Google Scholar]
  27. McClenaghan M., Inglis N. F., Herring A. J. 1991; Comparison of isolates of Chlamydia psittaci of ovine, avian and feline origin by analysis of polypeptide profiles from purified elementary bodies. Veterinary Microbiology 26:269–278
    [Google Scholar]
  28. Moulder J. W., Hatch T. P., Kuo C. C., Schachter J., Storz J. 1984; Genus Chlamydia . Bergey’s Manual of Systematic Bacteriology 1729–739 Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  29. Mullis K. B. 1990; Target amplification for DNA analysis by the polymerase chain reaction. Annales de Biologie Clinique 48:579–582
    [Google Scholar]
  30. Perez-Martinez J. A., Storz J. 1985; Antigenic diversity of Chlamydia psittaci of mammalian origin determined by microim-munofluorescence. Infection and Immunity 50:905–910
    [Google Scholar]
  31. Pickett M. A., Everson J. S., Clarke I. N. 1988; Chlamydia psittaci ewe abortion agent : complete nucleotide sequence of the major outer membrane protein gene. FEMS Microbiology Letters 55:229–234
    [Google Scholar]
  32. Rodolakis A., Bernard F., Lantier F. 1989; Mouse models for evaluation of virulence of Chlamydia psittaci isolated from ruminants. Research in Veterinary Science 46:34–39
    [Google Scholar]
  33. Schachter J., Banks J., Sugg N., Sung M., Storz J., Meyer K. F. 1974; Serotyping of Chlamydia I. Isolates of ovine origin. Infection and Immunity 9:92–94
    [Google Scholar]
  34. Schachter J., Banks J., Sugg N., Sung M., Storz J., Meyer K. F. 1975; Serotyping of Chlamydia: isolates of bovine origin. Infection and Immunity 11:904–907
    [Google Scholar]
  35. Spears P., Storz J. 1979; Biotyping of Chlamydia psittaci based on inclusion morphology and response to diethylaminoethyldextran and cycloheximide. Infection and Immunity 45:224–232
    [Google Scholar]
  36. Stephens R. S., Sanchez-Pescador R., Wagar E. A., Inouye C., Urdea M. S. 1987; Diversity of Chlamydia trachomatis major outer membrane protein genes. Journal of Bacteriology 169:3879–3885
    [Google Scholar]
  37. Timms P., Eaves F. W., Girjes A. A., Lavin M. F. 1988; Comparison of Chlamydia psittaci isolates by restriction endonuclease and DNA probe analyses. Infection and Immunity 56:287–290
    [Google Scholar]
  38. Winsor D. K., Grimes J. E. 1988; Relationship between infectivity and cytopathology for L-929 cells, membrane proteins, and antigenicity of avian isolates of Chlamydia psittaci . Avian Diseases 32:421–431
    [Google Scholar]
  39. Yuan Y., Zhang Y. X., Watkins N. G., Caldwell H. D. 1988; Nucleotide and deduced amino acid sequences for the four variable domains of the major outer membrane proteins of the 15 Chlamydia trachomatis serovars. Infection and Immunity 57:1040–1049
    [Google Scholar]
  40. Zhang Y. X., Morrison S. G., Caldwell H. D., Baehr W. 1989; Cloning and sequence analysis of the major outer membrane protein genes of two Chlamydia psittaci strains. Infection and Immunity 57:1621–1625
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-11-2525
Loading
/content/journal/micro/10.1099/00221287-137-11-2525
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error