The aconitase of : purification of the enzyme and molecular cloning and map location of the gene () Free

Abstract

The aconitase of was purified to homogeneity, albeit in low yield (0·6%). It was shown to be a monomeric protein of 95000 or 97500 by gel filtration and SDS-PAGE analysis, respectively. The N-terminal amino acid sequence resembled that of the enzyme ( product), but the similarity at the DNA level was insufficient to allow detection of the gene using a 456 bp probe. Phages containing the gene were isolated from a - gene bank by immunoscreening with an antiserum raised against purified bacterial enzyme. The gene was located at 28 min (1350 kb) in the physical map of the chromosome by probing Southern blots with a fragment of the gene. Attempts to locate the gene using the same procedure with oligonucleotide probes encoding segments of the N-terminal amino acid sequence were complicated by the lack of probe specificity and an inaccuracy in the physical map of Kohara . ( 50, 495–508, 1987). Aconitase specific activity was amplified some 20-200-fold in cultures transformed with pGS447, a derivative of pUC119 containing the gene, and an apparent four-fold activation—deactivation of the phagemid-encoded enzyme was observed in late exponential phase. The aconitase antiserum cross-reacted with both the porcine and ( 120000) enzymes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-11-2505
1991-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/11/mic-137-11-2505.html?itemId=/content/journal/micro/10.1099/00221287-137-11-2505&mimeType=html&fmt=ahah

References

  1. Andrews S. C., Harrison P. M., Guest J. R. 1989; Cloning, sequencing, and mapping of the bacterioferritin gene (bfr) of Escherichia coli K-12. Journal of Bacteriology 171:3940–3947
    [Google Scholar]
  2. Arrand J. E. 1985; Preparation of nucleic acid probes. Nucleic Acid Hybridization, a Practical Approach17–45 Hames B. D., Higgins S. J. Oxford: IRL Press;
    [Google Scholar]
  3. Arthur H. M., Bramhill D., Eastlake P. B., Emmerson P. T. 1982; Cloning of the uvrD gene of E. coli and identification of the product. Gene 19:285–295
    [Google Scholar]
  4. Bachmann B. J. 1990; Linkage map of Escherichia coli K-12, edition 8. Microbiological Reviews 54:130–197
    [Google Scholar]
  5. Bell P. J., Andrews S. C., Sivak M. N., Guest J. R. 1989; Nucleotide sequence of the fnr-regulated fumarase gene (fumB) of Escherichia coli K-12. Journal of Bacteriology 171:3494–3503
    [Google Scholar]
  6. Bradford M. M. 1976; A rapid and sensitive method for the quantitative determination of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  7. Dingman D. W., Sonenshein A. L. 1987; Purification of aconitase from Bacillus subtilis and correlation of its N-terminal amino acid sequence with the citB gene. Journal of Bacteriology 169:3062–3067
    [Google Scholar]
  8. Emptage M. H., Dreyer J.-L., Kennedy M. C., Beinert H. 1983; Optical and EPR characterization of different species of active and inactive aconitase. Journal of Biological Chemistry 258:11106–11111
    [Google Scholar]
  9. Finch P. W., Wilson R. E., Brown K., Hickson I. D., Emmerson P. T. 1986a; Complete nucleotide sequence of the Escherichia coliptr gene encoding protease III. Nucleic Acids Research 19:7695–7703
    [Google Scholar]
  10. Finch P. W., Wilson R. E., Brown K., Hickson I. D., Tomkinson A. E., Emmerson P. T. 1986b; Complete nucleotide sequence of the Escherichia coli recC gene and the thyA–recC intergenic region. Nucleic Acids Research 14:4437–4451
    [Google Scholar]
  11. Flint D. H., Emptage M. H., Guest J. R. 1989; Fumarase A from E. coli contains a [4Fe-4S] cluster. Journal of Inorganic Biochemistry 36:306
    [Google Scholar]
  12. Gangloff S. P., Marguet D., Lauquin G. J.-M. 1990; Molecular cloning of the yeast mitochondrial aconitase gene (ACOI) and evidence of a synergistic regulation of expression by glucose plus glutamate. Molecular and Cellular Biology 10:3551–3561
    [Google Scholar]
  13. Gray C. T., Wimpenny J. W. T., Mossman M. R. 1966; Regulation of metabolism in facultative bacteria. II. Effects of aerobiosis and nutrition on the formation of Krebs cycle enzymes in Escherichia coli . Biochimica et Biophysica Acta 117:33–41
    [Google Scholar]
  14. Kennedy M. C., Bienert H. 1983; The state of cluster SH and S2– of aconitase during cluster interconversions and removal. Journal of Biological Chemistry 263:8194–8198
    [Google Scholar]
  15. Kennedy M. C., Emptage M. H., Dreyer J.-L., Bienert H. 1983; The role of iron in the activation-inactivation of aconitase. Journal of Biological Chemistry 258:11098–11105
    [Google Scholar]
  16. Kennedy M. C., Werst M., Telser J., Emptage M. H., Beinert H., Hoffman B. M. 1987; Mode of substrate carboxyl binding to the [4Fe-4S]+ cluster of reduced aconitase as studied by 17O and 13C electron-nuclear double resonance spectroscopy. Proceedings of the National Academy of Sciences of the United States of America 848854–8858
    [Google Scholar]
  17. Kohara Y., Akiyama K., Isono K. 1987; The physical map of the whole E. coli chromosome : application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 50:495–508
    [Google Scholar]
  18. Kroger M., Wahl R., Rice P. 1990; Compilation of DNA sequences of Escherichia coli (update 1990). Nucleic Acids Research 18:2549–2587
    [Google Scholar]
  19. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature London: 277680–685
    [Google Scholar]
  20. Laursen R. A. 1971; Solid phase Edman degradation: an automated peptide sequencer. European Journal of Biochemistry 20:89–102
    [Google Scholar]
  21. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning, a laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Mason P. J., Williams J. G. 1985; Hybridization analysis of DNA. Nucleic Acid Hybridization, a Practical Approach113–137 Hames B. D., Higgins S. J. Oxford: IRL Press;
    [Google Scholar]
  23. Meinkoth J., Wahl G. 1984; Hybridization of nucleic acids immobilized on solid supports. Analytical Biochemistry 138:267–284
    [Google Scholar]
  24. Miles J. M., Guest J. R. 1987; Molecular genetic aspects of the citric acid cycle of Escherichia coli . Biochemical Society Symposia 54:45–65
    [Google Scholar]
  25. Robbins A. H., Stout C. D. 1989a; The structure of aconitase. Proteins 5:289–312
    [Google Scholar]
  26. Robbins A. H., Stout C. D. 1989b; Structure of activated aconitase: Formation of the [4Fe-4S] cluster in the crystal. Proceedings of the National Academy of Sciences of the United States of America 863639–3643
    [Google Scholar]
  27. Rosenkrantz M. S., Dingman D. W., Sonenshein A. L. 1985; Bacillus subtilis citB gene is regulated synergistically by glucose and glutamine. Journal of Bacteriology 164:155–164
    [Google Scholar]
  28. Ryden L., Ofverstedt L., Beinert H., Emptage H., Kennedy M. C. 1984; Molecular weight of beef heart aconitase and stoichiometry of the components of its iron-sulfur cluster. Journal of Biological Chemistry 259:3141–3144
    [Google Scholar]
  29. Scholze H. 1983; Studies on aconitase species from Saccharomyces cerevisiae porcine and bovine heart, obtained by a modified isolation method. Biochemica et Biophysica Acta 746:133–137
    [Google Scholar]
  30. Southern E. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  31. Suzuki T., Yamazaki O., Nara K., Akiyama S.-I., Nakao Y., Fukuda H. 1975; The aconitase of yeast: II. crystallization and general properties of yeast aconitase. Journal of Biochemistry 77:367–372
    [Google Scholar]
  32. Villafranca J. J., Mildvan A. S. 1971; The mechanism of aconitase action. Journal of Biological Chemistry 246:772–779
    [Google Scholar]
  33. Werst M. M., Kennedy M. C., Bienert H., Hoffman B. M. 1990a; 17O, 1H, and 2H electron double resonance characterization of solvent, substrate, and inhibitor binding to the [4Fe-4S]+ cluster of aconitase. Biochemistry 29:10526–10532
    [Google Scholar]
  34. Werst M. M., Kennedy M. C., Bienert H., Houseman A. L. P., Hoffman B. M. 1990b; Characterization of the [4Fe-4S] cluster at the active site of aconitase by 57Fe, 33S, and 14N electron double resonance spectroscopy. Biochemistry 29:10533–10540
    [Google Scholar]
  35. Wilde R. J. 1988 PhD Thesis, University of Sheffield
    [Google Scholar]
  36. Wilde R. J., Jeyaseelan K., Guest J. R. 1986; Cloning of the aconitase gene (acn) of Esherichia coli . Journal of General Microbiology 132:1763–1766
    [Google Scholar]
  37. Woods S. A., Schwartzbach S. D., Guest J. R. 1988; Two biochemically distinct classes of fumarases in Escherichia coli . Biochimica et Biophysica Acta 954:14–26
    [Google Scholar]
  38. Zheng L., Andrews M. A., Hermodson M. A., Dixon J. E., Zalkin H. 1990; Cloning and structural characterization of porcine heart aconitase. Journal of Biological Chemistry 26:2814–2821
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-11-2505
Loading
/content/journal/micro/10.1099/00221287-137-11-2505
Loading

Data & Media loading...

Most cited Most Cited RSS feed