1887

Abstract

Transformation of the thermotolerant streptomycete, soil isolate S541, with plasmid cloning vectors of varying size, copy number, and parent replicon (derived from pIJ101, SCP2* and SLP1.2) depressed the biosynthesis of nemadectins (polyketide-derived secondary metabolites possessing anthelmintic activity). However, production of the chemically distinct 21-hydroxyl-oligomycin A, also produced by S541, was either unaffected or increased in plasmid-containing strains. A causal relationship between plasmid carriage and the changes in secondary metabolite yield was confirmed since cured strains were restored to normal production levels and their subsequent retransformation by plasmid DNA was followed by the same effects on nemadectin and oligomycin biosynthesis as before. All the plasmids tested were highly unstable in S541 and it was generally necessary to include an appropriate selective antibiotic (usually thiostrepton) in the growth medium. Thiostrepton was not responsible for the depressive effect, since this was also observed in plasmid-containing strains (i) when grown in antibiotic-free media and (ii) when alternative selective antibiotics such as neomycin were used. In addition, the plasmid-free strain produced both nemadectins and 21-hydroxyl-oligomycin A in the presence of sub-inhibitory levels of thiostrepton. The thiostrepton resistance gene, which was present on many of the plasmids tested, did not mediate the effect since plasmids carrying other selectable markers (pIJ58, neomycin, and pIJ355, viomycin) also depressed nemadectin but not 21-hydroxyl-oligomycin A production. No obvious recombination or integration events between S541 chromosomal DNA and any of the plasmids tested were revealed by DNA-DNA Southern hybridization.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-10-2331
1991-10-01
2021-05-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/10/mic-137-10-2331.html?itemId=/content/journal/micro/10.1099/00221287-137-10-2331&mimeType=html&fmt=ahah

References

  1. Akrigg D., Bleasby A.J., Dix N. I. M., Findlay J. B. C., North A. C. T., Parry-Smith D., Wootton J. C., Blundell T. L., Gardner S. P., Hayes F., Islam S., Sternberg M. J. E., Thornton J. M., Tickle I. J., Murray-Rust P. 1988; A protein sequence/structure database. Nature London: 335745–746
    [Google Scholar]
  2. Bailey C. R., Butler M. J., Normansell I. D., Rowlands R. T., Winstanley D. J. 1984; Cloning a Streptomyces clavuligerus genetic locus involved in clavulanic acid biosynthesis. Bio/Technology 2:808–811
    [Google Scholar]
  3. Beddall N. E., Howes P. D., Ramsay V. J., Roberts M., Slawin A. M. Z., Sutherland D. R., Tiley E. P., Williams D. J. 1988; Chemical transformations of S541 factors (A)–(D): preparation and ; reactions of the 23-ketones. Tetrahedron Letters 29:2595–2598
    [Google Scholar]
  4. Bu’Lock J. D., Morris G. A., Richards M. K. 1986; Biosynthetic origins of the large macrolide, oligomycin A. Tetrahedron Letters 27:2917–2920
    [Google Scholar]
  5. Campbell W. C., Fisher M. H., Stapley E. O., Albers-Schonberg G., Jacob T. A. 1983; Ivermectin: a potent new antiparasitic agent. Science 221:823–828
    [Google Scholar]
  6. Carter G. T., Nietsche J. A., Hertz M. R., Williams D. R., Siegel M. M., Morton G. O., James J. C., Borders D. B. 1988; LL-F28249 antibiotic complex: a new family of antiparasitic macrocyclic lactones. Isolation, characterization and structures of LL-F28249α β λ γ . Journal of Antibiotics 41:519–529
    [Google Scholar]
  7. Cox K. L., Seno E. T. 1990; Maintenance of cloned biosynthetic genes in Streptomyces fradiae on freely-replicating and integrative plasmid vectors. Journal of Cellular Biochemistry, Supplement 14A, Abstracts of the 14th UCLA Symposia, abstract CC 01693
    [Google Scholar]
  8. Cundliffe E. 1978; Mechanism of resistance to thiostrepton in producing-organism Streptomyces azureus . Nature London: 272792–795
    [Google Scholar]
  9. Davies G., Green R. H. 1986; Avermectins and milbemycins. Natural Product Reports 3:87–121
    [Google Scholar]
  10. Fishman S. E., Cox K., Larson J. L., Reynolds P. A., Seno E. T., Yeh W.-K., van Frank R., Hershberger L. 1987; Cloning genes for the biosynthesis of a macrolide antibiotic. Proceedings of the National Academy of Sciences of the United States of America 848248–8352
    [Google Scholar]
  11. Hopwood D. A., Kieser T., Wright H. M., Bibb M. J. 1983; Plasmids, recombination and chromosomal mapping in Streptomyces lividans 66. Journal of General Microbiology 129:2257–2269
    [Google Scholar]
  12. Hopwood D. A., Bibb M. J., Chater K. F., Kieser T., Bruton C. J., Kieser H. M., Lydiate D. J., Smith C. P., Ward J. M., Schrempf H. 1985a Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich, UK: John Innes Foundation;
    [Google Scholar]
  13. Hopwood D. A., Malpartida F., Kieser H. M., Ikeda H., Duncan J., Fujii I., Rudd B. A. M., Floss H. G., Omura S. 1985b; Production of hybrid antibiotics by genetic engineering. Nature London: 314642–645
    [Google Scholar]
  14. Hunter I. S., Baumberg S. 1989; Molecular genetics of antibiotic formation. Symposia of the Society for General Microbiology 44:121–162
    [Google Scholar]
  15. Jones G. H., Hopwood D. A. 1984; Molecular cloning and expression of the phenoxazinone synthase gene from Streptomyces antibioticus . Journal of Biological Biochemistry 259:14151–14157
    [Google Scholar]
  16. Katz E., Thompson C. J., Hopwood D. A. 1983; Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans . Journal of General Microbiology 129:2703–2714
    [Google Scholar]
  17. Kendall K. J., Cohen S. N. 1988; Complete nucleotide sequence of the Streptomyces lividans plasmid pIJ101 and correlation of the sequence with genetic properties. Journal of Bacteriology 170:4634–4651
    [Google Scholar]
  18. Kieser T., Hopwood D. A., Wright H. M., Thompson C. J. 1982; pIJ101, a multi-copy broad host range Streptomyces plasmid: functional analysis and development of DNA cloning vectors. Molecular and General Genetics 185:223–238
    [Google Scholar]
  19. Lydiate D. J., Malpartida F., Hopwood D. A. 1985; The Streptomyces plasmid SCP2*: its functional analysis and development into useful cloning vectors. Gene 35:223–235
    [Google Scholar]
  20. Malpartida F., Hopwood D. A. 1984; Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression into a heterologous host. Nature London: 309462–464
    [Google Scholar]
  21. Murakami T., Holt T. G., Thompson C. J. 1989; Thiostrepton-induced gene expression in Streptomyces lividans . Journal of Bacteriology 171:1459–1466
    [Google Scholar]
  22. Ömura S., Ikeda H., Malpartida F., Kieser H. M., Hopwood D. A. 1986; Production of new hybrid antibiotics Mederrhodin A and B by a genetically engineered strain. Antimicrobial Agents and Chemotheraphy 29:13–19
    [Google Scholar]
  23. Onishi J. C., Miller T. W. 1985; The lack of antifungal activity by avermectin B1a . Journal of Antibiotics 38:1568–1572
    [Google Scholar]
  24. Ono M., Mishima H., Takiguchi Y., Terao M. 1983; Milbemycins; a new family of macrolide antibiotics. Studies on the biosynthesis of milbemycins α 2 α 4 and D using 13C labelled precursors. Journal of Antibiotics 36:991–1000
    [Google Scholar]
  25. Piret J. M., Chater K. F. 1985; Phage mediated cloning of bidA, a region involved in Streptomyces coelicolor morphological development, and its analysis by genetic complementation. Journal of Bacteriology 163:965–982
    [Google Scholar]
  26. Ramsay M. V. J., Roberts S. M., Russell J. C., Shingler A. H., Slawin A. M. Z., Sutherland D. R., Tiley E. P., Williams D. J. 1987; Novel antiparasitic agents by modification of a new natural product series. Tetrahedron Letters 28:5353–5356
    [Google Scholar]
  27. Rudd B. A. M., Noble D., Foster G., Lane S. J., Webb G. 1990; The biosynthesis of a family of novel antiparasitic macrolides. Abstracts of the 6th International Symposia of the Genetics of Industrial MicroorganismsStrasbourg abstract A70 96
    [Google Scholar]
  28. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning. A Laboratory Manual, 2. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Thompson C. J., Kieser T., Ward J. M., Hopwood D. A. 1982a; Cloning of antibiotic resistance and nutritional genes in streptomycetes. Journal of Bacteriology 151:668–677
    [Google Scholar]
  30. Thompson C. J., Skinner R. H., Thompson J., Ward J. M., Hopwood D. A., Cundliffe E. 1982b; Biochemical characterisation of resistance determinants cloned from antibiotic-producing streptomycetes. Journal of Bacteriology 151:678–685
    [Google Scholar]
  31. Vallins W. J. S., Baumberg S. 1985; Cloning of a DNA fragment from Streptomyces griseus which directs streptomycin phosphotransferase activity. Journal of General Microbiology 131:1657–1669
    [Google Scholar]
  32. Ward J. B., Noble H. M., Porter N., Fletton R. A., Noble D. 1984; Antiparasitic compounds and their preparation. UK Patent GB2 166:436AMay8 1986
    [Google Scholar]
  33. White A. T., Newland H. S., Taylor H. R., Erttmann K. D., Keyvan-Larijani E., Nara A., Aziz S., D’Anna S. A., Williams P. N., Greene B. M. 1987; Controlled trial and dose-finding study of Ivermectin for treatment of onchocerciasis. Journal of Infectious Diseases 156:463–470
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-10-2331
Loading
/content/journal/micro/10.1099/00221287-137-10-2331
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error