1887

Abstract

Summary: spp. UCSB8 and UCSB25 are both capable of aerobic N fixation. The optimum temperature for CH reduction was 22 °C for sp. UCSB8 and 35 °C for sp. UCSB25, whilst the optimum temperature for growth on N was 25 °C and 30 °C, respectively. In sp. UCSB25, but not in UCSB8, inhibition of N fixation may limit diazotrophic growth at temperatures above 35 °C. When grown under alternating 12 h light and 12 h darkness, both isolates reduced CH predominantly in the dark and both were capable of N fixation and photoheterotrophic growth in the presence of 20 μm-DCMU to inhibit photosystem II activity. Under these conditions, the best exogenous carbon source for sp. UCSB8 was glucose, whilst that for sp. UCSB25 was fructose. In sp. UCSB8, exogenous glucose was catabolized mainly through the oxidative pentose phosphate pathway. Although cultures grown photoheterotrophically showed higher specific activities of nitrogenase than photoautotrophic cultures, they grew more slowly. Furthermore, cultures grown photoheterotrophically under alternating light and darkness reduced CH both in the light and in the dark, but the highest rates of CH reduction were observed in the dark. This cyclic pattern of N fixation was independent of photosystem II activity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-1-31
1991-01-01
2021-08-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/1/mic-137-1-31.html?itemId=/content/journal/micro/10.1099/00221287-137-1-31&mimeType=html&fmt=ahah

References

  1. Bailey J. L. 1962 Techniques in Protein Chemistry293 Amsterdam: Elsevier;
    [Google Scholar]
  2. Bennett A., Bogorad L. 1973; Complementary chromatic adaptation in a filamentous blue-green alga. Journal of Cell Biology 58:419–435
    [Google Scholar]
  3. Bryceson I., Fay P. 1981; Nitrogen fixation in Oscillatoria (Trichodesmium) erythrea in relation to bundle formation and trichome differentiation. Marine Biology 61:159–166
    [Google Scholar]
  4. Carpenter E. J., Price C. C. 1976; Marine Oscillatoria Trichodesmium) : explanation for aerobic nitrogen fixation without heterocysts. Science 191:1278–1280
    [Google Scholar]
  5. Carr N. G. 1988; Nitrogen reserves and dynamic reservoirs in cyanobacteria. Biochemistry of the Algae and Cyanobacteria13–21 Rogers L. J., Gallon J. R. Oxford: Oxford University Press;
    [Google Scholar]
  6. Fay R. H., Gibson C. E., Smith R. V. 1976; The influence of day length, light intensity and temperature on the growth rates of planktonic blue-green algae. British Phycological Journal 11:151–163
    [Google Scholar]
  7. Gallon J. R. 1980; Nitrogen fixation by photoautotrophs. Nitrogen Fixation197–238 Stewart W. D. P., Gallon J. R. London: Academic Press;
    [Google Scholar]
  8. Gallon J. R. 1989; The physiology and biochemistry of N2 fixation by non-heterocystous cyanobacteria. Phykos 28:18–46
    [Google Scholar]
  9. Gallon J. R., Chaplin A. E. 1988; Recent studies on N2 fixation by non-heterocystous cyanobacteria. Proceedings of the 7th International Congress on Nitrogen Fixation183–188 Bothe H., de Bruijn F. J., Newton W. E. Stuttgart: Fischer;
    [Google Scholar]
  10. Gallon J. R., Hamadi A. F. 1984; Studies on the effects of oxygen on acetylene reduction (nitrogen fixation) in Gloeothece sp. ATCC 27 152. Journal of General Microbiology 130:495–503
    [Google Scholar]
  11. Gallon J. R., Ul-Haque M. I., Chaplin A. E. 1978; Fluoroacetate metabolism in Gloeocapsa sp. LB795 and its relationship to acetylene reduction (nitrogen fixation). Journal of General Microbiology 106:329–336
    [Google Scholar]
  12. Gallon J. R., Perry S. M., Rajab T. M. A., Flayeh K. A. M., Yunes J. S., Chaplin A. E. 1988; Metabolic changes associated with the diurnal pattern of N2 fixation in Gloeothece . Journal of General Microbiology 134:3079–3087
    [Google Scholar]
  13. Griffiths M. S. H., Gallon J. R., Chaplin A. E. 1987; The diurnal pattern of dinitrogen fixation by cyanobacteria in situ . New Phytologist 107:649–657
    [Google Scholar]
  14. Grobbelaar N., Huang T. C., Lin H. Y., Chow T. J. 1986; Dinitrogen-fixing endogenous rhythm in Svnechococcus RF-1. FEMS Microbiology Letters 37:173–177
    [Google Scholar]
  15. Grobbelaar N., Lun H.-Y., Huang T.-C. 1987; Induction of a nitrogenase activity rhythm in Synechococcus and the protection of its nitrogenase against photosynthetic oxygen. Current Microbiology 15:29–33
    [Google Scholar]
  16. Haselkorn R. 1978; Heterocysts. Annual Review of Plant Physiology 29:319–344
    [Google Scholar]
  17. Huang T.-C., Chow T.-J. 1988; Comparative studies of some nitrogen fixing unicellular cyanobacteria isolated from rice fields. Journal of General Microbiology 134:3089–3097
    [Google Scholar]
  18. Khamees H. S., Gallon J. R., Chaplin A. E. 1987; The pattern of acetylene reduction by cyanobacteria grown under alternating light and darkness. British Phycological Journal 22:55–60
    [Google Scholar]
  19. Malin G., Pearson H. W. 1988; Aerobic nitrogen fixation in aggregate forming cultures of the non-heterocystous cyanobacterium Microcoleus chthonoplastes . Journal of General Microbiology 134:1755–1763
    [Google Scholar]
  20. Maryan P. S., Eady R. R., Chaplin A. E., Gallon J. R. 1986; Nitrogen fixation by Gloeothece sp. PCC 6090: respiration and not photosynthesis supports nitrogenase activity in the light. Journal of General Microbiology 132:789–796
    [Google Scholar]
  21. Mitsui A., Kumazawa S., Takahashi A., Ikemoto H., Cao S., Arai T. 1986; Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically. Nature, London 323:720–722
    [Google Scholar]
  22. Mitsui A., Cao S., Takahashi A., Arai T. 1987; Growth synchrony and cellular parameters of the unicellular nitrogen-fixing marine cyanobacterium, Synechococcus sp. strain Miami BG 043511 under continuous illumination. Physiologia Plantarum 69:1–8
    [Google Scholar]
  23. Mullineaux P. M., Gallon J. R., Chaplin A. E. 1981; Acetylene reduction (nitrogen fixation) by cyanobacteria grown under alternating light-dark cycles. FEMS Microbiology Letters 10:245–247
    [Google Scholar]
  24. Musgrave S. C., Kerby N. W., Codd G. A., Stewart W. D. P. 1982; Sustained ammonia production by immobilized filaments of the nitrogen-fixing cyanobacterium Anabaena 27893. Biotechnology Letters 4:647–652
    [Google Scholar]
  25. Neuer G., Papen H., Bothe H. 1983; Heterocyst biochemistry and differentiation. Photosynthetic Prokaryotes219–242 Papageorgiou G. C., Packer L. New York: Elsevier;
    [Google Scholar]
  26. Ohki K., Fujita Y. 1988; Aerobic nitrogenase activity measured as acetylene reduction in the marine non-heterocystous cyanobacterium Trichodesmium spp. grown under artificial conditions. Marine Biology 98:111–114
    [Google Scholar]
  27. Paerl H. W., Carlton R. G. 1988; Control of nitrogen fixation by oxygen depletion in surface-associated microzones. Nature, London 332:260–262
    [Google Scholar]
  28. Pearson H. W., Howsley R., Kjeldsen C. K., Walsby A. E. 1979; Aerobic nitrogenase activity associated with a non-heterocys- tous filamentous cyanobacterium. FEMS Microbiology Letters 5:163–167
    [Google Scholar]
  29. Price C. A. 1965; A membrane method for determination of total protein in dilute algal suspensions. Analytical Biochemistry 12:213–218
    [Google Scholar]
  30. Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stanier R. Y. 1979; Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology 111:1–61
    [Google Scholar]
  31. Smith A. J. 1982; Modes of cyanobacterial carbon metabolism. The Biology of Cyanobacteria47–85 Carr N. G., Whitton B. A. Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  32. Spiller H., Shanmugam K. T. 1987; Physiological conditions for nitrogen fixation in a unicellular marine cyanobacterium, Synecho-coccus sp. strain SF1. Journal of Bacteriology 169:5379–5384
    [Google Scholar]
  33. Stal L. J., Krumbein W. E. 1981; Aerobic nitrogen fixation in pure cultures of benthic marine Oscillatoria (cyanobacteria). FEMS Microbiology Letters 11:295–298
    [Google Scholar]
  34. Stal L. J., Krumbein W. E. 1985a; Nitrogenase activity in the non-heterocystous cyanobacterium Oscillatoria sp. grown under alternating light-dark cycles. Archives of Microbiology 143:67–71
    [Google Scholar]
  35. Stal L. J., Krumbein W. E. 1985b; Oxygen protection of nitrogenase in the aerobically nitrogen fixing, non-heterocystous cyanobacterium Oscillatoria sp. Archives of Microbiology 143:72–76
    [Google Scholar]
  36. TozumTözüm S. R. D., Gallon J. R. 1979; The effects of methyl viologen on Gloeocapsa sp. LB795 and their relationship to the inhibition of acetylene reduction (nitrogen fixation) by oxygen. Journal of General Microbiology 111:313–326
    [Google Scholar]
  37. Tözüm D., Ul-Haque M. I., Chaplin A. E., Gallon J. R. 1977; The effect of fluoroacetate on acetylene reduction by Gloeocapsa . Biochemical Society Transactions 5:1482–1484
    [Google Scholar]
  38. Vaara T., Vaara M., Niemela S. 1979; Two improved methods for obtaining axenic cultures of cyanobacteria. Applied and Environmental Microbiology 38:1011–1014
    [Google Scholar]
  39. Wolk C. P. 1982; Heterocysts. The Biology of Cyanobacteria359–386 Carr N. G., Whitton B. A. Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  40. Wyatt J. T., Silvey J. K. G. 1969; Nitrogen fixation by Gloeocapsa . Science 165:908–909
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-1-31
Loading
/content/journal/micro/10.1099/00221287-137-1-31
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error