1887

Abstract

Summary: An extremely thermophilic coccoid bacterium, designated strain ES4, was isolated from a flange (a newly described geological structure associated with massive sulphide mounds) at the Juan de Fuca Ridge hydrothermal vent system. The organism is a salt-requiring obligately anaerobic chemoorganotroph which reduces elemental sulphur but can grow very poorly in the absence of sulphur. Organic substrates utilized include yeast extract, peptone and amino acid hydrolysate as well as individual amino acids, the peptide Leu-Ser and starch. When growing on a defined medium, ES4 requires a supplement of vitamins and 20 amino acids at trace concentrations. Growth is most rapid in the temperature range 90-99 °C, with a maximum growth temperature of about 110 °C. In the optimal temperature range for growth, ES4 has a doubling time of about 1 h and can reach densities of 10 cells ml. Insensitivity to the antibiotics vancomycin, streptomycin and chloramphenicol, and the presence of di- and tetra-ether phytanyl lipids, indicate that ES4 is an archaeobacterium.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-1-203
1991-01-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/1/mic-137-1-203.html?itemId=/content/journal/micro/10.1099/00221287-137-1-203&mimeType=html&fmt=ahah

References

  1. Balch W. E., Wolfe R. S. 1976; New approach to the cultivation of methanogenic bacteria: 2-mercaptoethane-sulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Applied and Environmental Microbiology 32:781–791
    [Google Scholar]
  2. Baross J. A., Deming J. W. 1985; The role of bacteria in the ecology of black smoker environments. Hydrothermal Vents of the Eastern Pacific Rise: an Overview355–371 Jones M. L. Washington, DC: Biological Society of Washington;
    [Google Scholar]
  3. Baross J. A., Deming J. W., Becker R. R. 1984; Evidence for microbial growth in high-pressure high-temperature environments. Current Perspectives in Microbial Ecology186–195 Klug M. J., Reddy C. A. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Baross J. A., Delaney J. R., McDuff R. E., Pledger R. J. 1989; Preliminary geochemical and ecological characteristics of sulfide flange environments on the Endeavour Segment of the northern Juan de Fuca Ridge. Transactions, American Geophysical Union 70:1163
    [Google Scholar]
  5. Belkin S., Wirsen C. O., Jannasch H. W. 1985; Biological and abiological sulfur reduction at high temperatures. Applied and Environmental Microbiology 49:1057–1061
    [Google Scholar]
  6. Bernhardt G., Jaenicke R., Ludemann H. D., Konig H., Stetter K. O. 1988; High pressure enhances the growth rate of the thermophilic archaebacterium Methanococcus thermolithotrophicus without extending its temperature range. Applied and Environmental Microbiology 54:1258–1261
    [Google Scholar]
  7. Bligh E. G., Dyer W. J. 1959; A rapid method of lipid extraction and purification. Canadian Journal of Microbiology 35:911–917
    [Google Scholar]
  8. Cline J. D. 1969; Spectrophotometric determination of hydrogen sulfide in natural waters. Limnology and Oceanography 14:454–458
    [Google Scholar]
  9. Corliss J. B., Dymond J., Gordon L. I., Edmonds J. M., von Herzen R. P., Ballard R. D., Green K., Williams D., Bainbridge A., Crane K., van Andel T. H. 1977; Submarine thermal springs on the Galapagos Rift. Science 203:1073–1083
    [Google Scholar]
  10. Cowan J. P. 1989; Positive pressure effect on manganese binding by bacteria in deep-sea hydrothermal plumes. Applied and Environmental Microbiology 55:764–766
    [Google Scholar]
  11. Daniels C. J., McKee A. H. Z., Doolittle W. F. 1984; Archaebacterial heat-shock proteins. EMBO Journal 3:745–749
    [Google Scholar]
  12. Delaney J. R., McDuff R. E., Lupton J. E. 1984; Hydrothermal fluid temperatures of 400 °C on the Endeavour Segment, northern Juan de Fuca. Transactions, American Geophysical Union 65:973
    [Google Scholar]
  13. Delaney J. R., Lilley M. D., McDuff R. E., Baross J. A. 1988; Standing pools of 350 degrees fluid and large seafloor sulfide structures. Transactions, American Geophysical Union 69:1497–1498
    [Google Scholar]
  14. DeLuca S. J., Voorhees K. J., Langworthy T. A., Holzer G. 1986; Capillary supercritical fluid chromatography of archaebacterial glycerol tetra-ether lipids. Journal of High Resolution Chromatography, Chromatography Communications 9:182–185
    [Google Scholar]
  15. Fiala G., Stetter K. O., Jannasch H. W., Langworthy T. A., Madon J. 1986; Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98 °C. Systematic and Applied Microbiology 8:106–113
    [Google Scholar]
  16. Gehron M. J., White D. C. 1983; Sensitive assay of phospholipid glycerol in environmental samples. Journal of Microbiological Methods 1:23–32
    [Google Scholar]
  17. Huber R., Kurr M., Jannasch H. W., Stetter K. O. 1989; A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110 °C. Nature, London 342:833–834
    [Google Scholar]
  18. Ingvorsen K., Jorgensen B. B. 1979; Combined measurement of oxygen and sulfide in water samples. Limnology and Oceanography 24:390–393
    [Google Scholar]
  19. Jaenicke R. 1983; Biochemical processes under high hydrostatic pressure: physico-chemical approaches to barosensitivity. Natur-wissenschaften 70:332–341
    [Google Scholar]
  20. Jannasch H. W., Mottl M. 1985; Geomicrobiology of deep-sea hydrothermal vents. Science 229:717–725
    [Google Scholar]
  21. Jannasch H. W., Wirsen C. O., Molyneaux S. J., Langworthy T. A. 1988; Extremely thermophilic fermentative archaebacteria of the genus Desulfurococcus from deep-sea hydrothermal vents. Applied and Environmental Microbiology 54:1203–1209
    [Google Scholar]
  22. Jerez C. A. 1988; The heat shock response in meso- and thermoacidophilic chemolithotrophic bacteria. FEMS Microbiology Letters 56:289–294
    [Google Scholar]
  23. Karl D. M. 1986; Determination of in situ microbial biomass, viability, metabolism, and growth. Bacteria in Nature: Methods and Special Applications in Bacterial Ecology 285–176 Poindexter J. S., Leadbetter E. R. New York: Plenum Press;
    [Google Scholar]
  24. Koval S. F. 1988; Paracrystalline protein surface arrays on bacteria. Canadian Journal of Microbiology 34:407–414
    [Google Scholar]
  25. Miller J. F., Shah N. N., Nelson C. M., Ludlow J. M., Clark D. S. 1988; Pressure and temperature effects on growth and methane production of the extreme thermophile Methanococcus jannaschii . Applied and Environmental Microbiology 54:3039–3042
    [Google Scholar]
  26. Miroshniche M. L., Bonch-Osmolovskaya E. A., Neuner A., Kostrikina N. A., Chernych N. A., Alekseev V. A. 1989; Thermococcus stetteri sp. nov., a new extremely thermophilic marine sulfur-metabolizing archaebacterium. Systematic and Applied Microbiology 12:257–262
    [Google Scholar]
  27. Morita R. Y. 1972; Pressure: bacteria, fungi and blue-green algae. Marine Ecology - Environmental Factors 131361–1450 Kinne O. London: Interscience;
    [Google Scholar]
  28. Neidhardt F. C., VanBogelen R. A. 1987; Heat shock response. Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology1334–1345 Ingraham J. L., Low K. B., Magasanik B., Schaechter M., Umbarger H. E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  29. Neuner A., Jannasch H. W., Belkin S., Stetter K. O. 1990; Thermococcus litoralis sp. nov.: a new species of extremely thermophilic marine archaebacteria. Archives of Microbiology 153:205–207
    [Google Scholar]
  30. Pledger R. J., Baross J. A. 1989; Characterization of an extremely thermophilic archaebacterium isolated from a black smoker polychaete (Paralvinella sp.) at the Juan de Fuca Ridge. Systematic and Applied Microbiology 12:249–256
    [Google Scholar]
  31. Porter K. G., Feig Y. S. 1980; The use of DAPI for identifying and counting microflora. Limnology and Oceanography 25:943–948
    [Google Scholar]
  32. Spiess F. N., Macdonald K. C., Atwater R., Ballard R., Carranza A., Cordoba D., Cox C., Diaz Garcia V. M., Francheteau J., Guerrero J., Hawkins J., Haymon R., Hessler R., Juteau T., Kastner M., Larson R., Luyendyk B., Macdougall J. D., Miller S., Normark W., Orcutt J., Rangin C. 1980; East Pacific Rise: hot springs and geophysical experiments. Science 207:1421–1433
    [Google Scholar]
  33. Stetter K. O., Konig H., Stackebrandt E. 1983; Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur reducing archaebacteria growing optimally at 105 °C. Systematic and Applied Microbiology 4:535–551
    [Google Scholar]
  34. Tivey M. A., Johnson H. P. 1987; The central anomaly magnetic high: implications for ocean crust construction and evolution. Journal of Geophysical Research 92:12685–12694
    [Google Scholar]
  35. Trent J. D., Osipiuk J., Pinkau T. 1990; Acquired thermo-tolerance and heat shock in the extremely thermophilic archaebacterium Sulfolobus sp. strain B12. Journal of Bacteriology 172:1478–1484
    [Google Scholar]
  36. White D. C., Davis W. M., Nickels J. S., King J. D., Bobbie R. J. 1979; Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40:201–211
    [Google Scholar]
  37. Zillig W., Holz I., Janekovic D., Klenk H. P., Imsel E., Trent J., Wunderl S., Forjaz V. H., Coutinho R., Ferreira T. 1990; Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. Journal of Bacteriology 172:3959–3965
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-1-203
Loading
/content/journal/micro/10.1099/00221287-137-1-203
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error