1887

Abstract

Triton X-100 (TX-100) extraction of plasma membrane solubilized two types of ATPase differing in their pH of maximum activity. The activity measured at pH 8·5 was inhibited by vanadate and the activity measured at pH 6·5 was not. The vanadate-sensitive ATPase had a relatively basic isoelectric point (8·65) and therefore could be separated from the vanadate-insensitive ATPase using chromatofocusing. Elution of the TX-100 membrane extract in a pH gradient from 9 to 6 generated two peaks of ATPase activity: one in the acidic range, composed of an FF-type ATPase, and one in the basic range, corresponding to the vanadate-sensitive activity. Electrophoretic analysis of proteins from the latter peak revealed one major polypeptide of 37 kDa. This peptide was shown to correspond to spot A37 in a two-dimensional protein map of . Using the gene for the -operon of as a probe in heterologous hybridization, sequences were detected in the genomic DNA of , suggesting that a gene coding for an enzyme related to this P-type ATPase is present in the genome. We therefore postulate the presense of two distinct kinds of ATPase in : one of the F-type which is resistant to vanadate inhibition, and one, probably of the P-type, which is vanadate-sensitive.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-1-179
1991-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/1/mic-137-1-179.html?itemId=/content/journal/micro/10.1099/00221287-137-1-179&mimeType=html&fmt=ahah

References

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 1976; 72:248–254
    [Google Scholar]
  2. Dulley J. R. Determination of inorganic phosphate in the presence of detergents or protein. Analytical Biochemistry 1975; 61:91–96
    [Google Scholar]
  3. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction fragments to high specific activity. Analytical Biochemistry 1984; 137:266–267
    [Google Scholar]
  4. Garenwal H. S. A procedure for the estimation of microgram quantities of Triton X-100. Analytical Biochemistry 1973; 54:319–324
    [Google Scholar]
  5. Hesse J. E., Wieczorek L., Altendorf K., Reicin A. S., Dorus E., Epstein W. Sequence homology between two membrane transport ATPases, the Kdp-ATPase of Escherichia coli and the Ca2+ATPase of sarcoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America 1984; 814746–4750
    [Google Scholar]
  6. Hugentobler G., Solioz M. Purification of a putative K+ATPase from Streptococcus faecalis . Journal of Biological Chemistry 1983; 258:7611–7617
    [Google Scholar]
  7. Kyhse-Andersen J. Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. Journal of Biochemical and Biophysical Methods 1984; 10:203–209
    [Google Scholar]
  8. Lewis N. A. H., McElhaney R. N. Purification and characterization of the membrane (Na+/Mg++ATPase from Acho-leplasma laidlawii B. Biochimica et Biophysica Acta 1983; 735:113–122
    [Google Scholar]
  9. Linker C., Wilson T. H. Cell volume regulation in Mycoplasma gallisepticum . Journal of Bacteriology 1985a; 163:1243–1258
    [Google Scholar]
  10. Linker C., Wilson T. H. Characterization and solubiliza-tion of the membrane-bound ATPase of Mycoplasma gallisepticum . Journal of Bacteriology 1985b; 163:1262–1269
    [Google Scholar]
  11. Macara I. G. Vanadium: an element in search of a role. Trends in Biochemical Sciences 1980; 5:92–94
    [Google Scholar]
  12. Morowitz H. J. The completeness of molecular biology. Israel Journal of Medical Sciences 1984; 20:750–753
    [Google Scholar]
  13. Mouchés C., Vignault J. C., Tully J. G., Whitcomb R. F., Bove J. M. Characterization of Spiroplasmas by one- and two-dimensional protein analysis on polyacrylamide slab gels. Current Microbiology 1979; 2:69–74
    [Google Scholar]
  14. Nimmo H. G., Nimmo G. A. A general method for the localization of enzymes that produce phosphate, pyrophosphate, or CO2 after polyacrylamide gel electrophoresis. Analytical Biochemistry 1982; 121:17–22
    [Google Scholar]
  15. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. Journal of Biological Chemistry 1975; 250:4007–4021
    [Google Scholar]
  16. O'Neal S., Rhoads D. B., Racker E. Vanadate inhibition of sarcoplasmic reticulum Ca2+ATPase and other ATPases. Biochemical and Biophysical Research Communications 1979; 89:845–850
    [Google Scholar]
  17. Pedersen P. L., Carafoli E. Ion motive ATPases. I. Ubiquity, properties, and significance to cell function. Trends in Biochemical Sciences 1987; 12:146–150
    [Google Scholar]
  18. Rasmussen O. F., Christiansen C. Identification of the proton ATPase operon in Mycoplasma strain PG50 by heterologous hybridization. Israel Journal of Medical Sciences 1987; 23:393–397
    [Google Scholar]
  19. Razin S. The mycoplasmas. Microbiological Reviews 1978; 42:414–470
    [Google Scholar]
  20. Rottem S., Platt M. W. Protein phosphorylation in spiroplasmas. Zentralblatt fur Bakteriologie 1989; 20:139–144
    [Google Scholar]
  21. Rottem S., Shirvan M. H., Barile M. F., Zilberstein D. Immunochemical evidence for an active (F[-F0ATPase in mycoplasmas. Israel Journal of Medical Sciences 1987; 23:389–391
    [Google Scholar]
  22. Shirvan M. H., Schuldiner S., Rottem S. 1987; Control of sodium fluxes in Mycoplasma gallisepticum . Israel Journal of Medical Sciences 23:384–388
    [Google Scholar]
  23. Shirvan M. H., Schuldiner S., Rottem S. Volume regulation in Mycoplasma gallisepticum: evidence that Na+ is extruded via a primary Na+ pump. Journal of Bacteriology 1989; 111:4417–4424
    [Google Scholar]
  24. Simoneau P., Labarere J. Isolation of Spiroplasma citri membranes and characterization of membrane proteins by two-dimensional gel electrophoresis. Current Microbiology 1988; 16:229–235
    [Google Scholar]
  25. Simoneau P., Labarere J. 1990; Immunochemical identification of an actin-like protein from Spiroplasma citri . Zentralblatt fur Bakteriologie 20:927–931
    [Google Scholar]
  26. Southern E. Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 1975; 98:503–517
    [Google Scholar]
  27. Townsend R., Archer D. B. A fibril protein antigen specific to Spiroplasma. Journal of General Microbiology 1983; 129:199–206
    [Google Scholar]
  28. Walderhaug M. O., Post R. L., Saccomani G., Leonard R. T., Briskin D. P. Structural relatedness of three ion-transport adenosine triphosphatases around their active sites of phosphorylation. Journal of Biological Chemistry 1985; 260:3852–3859
    [Google Scholar]
  29. Walderhaug M. O., Litwack E. D., Eptstein W. 1989; Wide distribution of homologs of E coli Kdp K+ATPase among Gram-negative bacteria. Journal of Bacteriology 111:1192–1195
    [Google Scholar]
  30. Woese C. R. Bacterial evolution. Microbiological Reviews 1987; 51:221–271
    [Google Scholar]
  31. Zilberstein D., Shirvan M. H., Barile M. F., Rottem S. The βsubunit of the F,F0ATPase is conserved in mycoplasmas. Journal of Biological Chemistry 1986; 261:7109–7111
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-1-179
Loading
/content/journal/micro/10.1099/00221287-137-1-179
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error