1887

Abstract

Summary: Two pectinesterase-positive clones, differing in expression levels, were isolated from a genomic library of . Both clones contained a common DNA fragment which included the pectinesterase-encoding region. The different expression levels found with the two clones could be ascribed to different positioning of the pectinesterase gene with respect to a vector promoter. Restriction analysis, subcloning, and further exonuclease deletion mapping revealed that the genetic information for pectinesterase was located within a 1·3 kb fragment. A protein of 41 to 42 kDa was expressed from this fragment. Nucleotide sequence analysis of the respective region disclosed an open reading frame of 1188 bp. The deduced polypeptide had a calculated molecular mass of 41 004 Da, which is consistent with the determined size of the pectinesterase protein. The predicted amino acid sequence showed significant homology to pectinesterases from and tomato. In cultures of clones up to 30% of total pectinesterase activity was transported into the medium. However, no significant pectinesterase activity could be detected in the periplasm.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-1-131
1991-01-01
2021-05-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/1/mic-137-1-131.html?itemId=/content/journal/micro/10.1099/00221287-137-1-131&mimeType=html&fmt=ahah

References

  1. Albersheim P., Neukom H., Deuel H. 1960; Formation of unsaturated dehydration products by a pectin degrading enzyme. Helvetica Chimica Acta 43:1422–1426
    [Google Scholar]
  2. Basham H. G., Bateman D. F. 1975; Killing of plant cells by pectic enzymes: the lack of direct injurious interaction between pectic enzymes and their soluble reaction products and plant cells. Phytopathology 65:141–153
    [Google Scholar]
  3. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7:1513–1523
    [Google Scholar]
  4. Bolivar F. 1978; Construction and characterization of new cloning vehicles. III. Derivatives of plasmid pBR322 carrying unique EcoRl sites for selection of EcoRl generated recombinant DNA molecules. Gene 4:121–136
    [Google Scholar]
  5. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S. 1977; Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113
    [Google Scholar]
  6. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  7. Buddenhagen I., Kelman A. 1964; Biological and physiological aspects of bacterial wilt caused by Pseudomonas solanacearum . Annual Review of Phytopathology 2:203–230
    [Google Scholar]
  8. Calesnick E. J., Hills C. H., Willaman J. J. 1950; Properties of a commercial fungal pectase preparation. Archives of Biochemistry 29:432–440
    [Google Scholar]
  9. Collmer A. 1986; The molecular biology of pectic enzyme production and bacterial soft rot pathogenesis. Biology and Molecular Biology of Plant Pathogen Interactions277–289 Barley J. A. New York: Springer;
    [Google Scholar]
  10. Collmer A., Schoedel C., Roeder D. L., Ried J. L., Rissler J. F. 1985; Molecular cloning in Escherichia coli of Erwinia chrysanthemi genes encoding multiple forms of pectate lyase. Journal of Bacteriology 161:913–920
    [Google Scholar]
  11. Deretic V., Konyecsni W. M., Mohr C. D., Martin D. W., Hibler N. S. 1989; Common denominators of promoter control in Pseudomonas and other bacteria. Biotechnology 7:1249–1254
    [Google Scholar]
  12. Dingle J., Reid W. W., Solomons G. L. 1953; The enzymic degradation of pectin and other polysaccharides. II. Application of the ‘cup-plate’ assay to the estimation of enzymes. Journal of the Science of Food and Agriculture 4:149–155
    [Google Scholar]
  13. Drew H. R., Weeks J. R., Travers A. A. 1985; Negative supercoiling induces spontaneous unwinding of a bacterial promoter. EM BO Journal 4:1025–1032
    [Google Scholar]
  14. Hadero A., Crawford I. P. 1986; Nucleotide sequence of the genes for tryptophan synthase in Pseudomonas aeruginosa . Molecular Biology and Evolution 3:191–204
    [Google Scholar]
  15. Hawley D. K., McClure W. R. 1983; Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Research 11:2237–2255
    [Google Scholar]
  16. Heppel L. A. 1971; The concept of periplasmic enzymes. Structure and Functions of Biological Membranes223–247 Rothfield L. I. New York: Academic Press;
    [Google Scholar]
  17. Hildebrand D. C. 1971; Pectate and pectin gels for differentiation of Pseudomonas sp. and other bacterial plant pathogens. Phytopathology 61:1430–1436
    [Google Scholar]
  18. Hinton J. C. D., Gill D. R., Lalo D., Plastow G. S., Salmond G. P. C. 1990; Sequence of the peh gene of Erwinia carotovora: homology between Erwinia and plant enzymes. Molecular Microbiology 4:1029–1036
    [Google Scholar]
  19. Holloway B. W., Morgan A. F. 1986; Genome organization in Pseudomonas . Annual Review of Microbiology 40:79–105
    [Google Scholar]
  20. Huang J., Schell M. A. 1990; DNA sequence analysis of pglA and mechanism of export of its polygalacturonase product from Pseudomonas solanacearum . Journal of Bacteriology 172:3879–3887
    [Google Scholar]
  21. Keen N. T., Dahlbeck D., Staskawicz B., Belser W. 1984; Molecular cloning of pectate lyase genes from Erwinia chrysanthemi and their expression in Escherichia coli . Journal of Bacteriology 159:825–831
    [Google Scholar]
  22. Kotoujansky A., Dioez A., Boccara M., Bertheau Y., Andro T., Coleno A. 1985; Molecular cloning of Erwinia chrysanthemi pectinase and cellulase structural genes. EM BO Journal 4:781–785
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  24. Lange E., Knösel D. 1970; Zur Bedeutung pektolytischer, cellulolytischer und proteolytischer Enzyme fur die Virulenz phyto-pathogener Bakterien. Phytopathologische Zeitschrift 69:315–329
    [Google Scholar]
  25. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning. A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Manulis S., Kobayashi D. Y., Keen N. T. 1988; Molecular cloning and sequencing of a pectate lyase gene from Yersinia pseudotuberculosis . Journal of Bacteriology 170:1825–1830
    [Google Scholar]
  27. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Needleman S. B., Wunsch C. D. 1970; A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48:443–453
    [Google Scholar]
  29. Norrander J., Kempe T., Messing J. 1983; Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 26:101–106
    [Google Scholar]
  30. O’Callaghan C. H., Morris A., Kirby S. M., Shingler A. H. 1972; Novel method for detection of β-lactamases by using a chromogenic cephalosporine substrate. Antimicrobial Agents and Chemotherapy 1:283–288
    [Google Scholar]
  31. Ofuya C. O. 1984; Physical properties of pectic polysaccharidases. of Pseudomonas solanacearum from Nigeria. Current Microbiology 10:141–146
    [Google Scholar]
  32. Plastow G. S. 1988; Molecular cloning and nucleotide sequence of the pectin methyl esterase gene of Erwinia chrysanthemi B374. Molecular Microbiology 2:247–254
    [Google Scholar]
  33. Ray J., Knapp J., Grierson D., Bird C., Schuch W. 1988; Identification and sequence determination of a cDNA clone for tomato pectin esterase. European Journal of Biochemistry 174:119–124
    [Google Scholar]
  34. Reverchon S., Hugouvieux-Cotte-Pattat N., Robert-Baudouy J. 1985; Cloning of genes encoding pectinolytic enzymes from a genomic library of the phytopathogenic bacterium Erwinia chrysanthemi . Gene 35:121–130
    [Google Scholar]
  35. Rombouts F. M., Pilnik W. 1986; Pectinases and other cell-wall degrading enzymes of industrial importance. Symbiosis 2:79–90
    [Google Scholar]
  36. Saito H., Miura K.-I. 1963; Preparation of transforming DNA by phenol treatment. Biochimica et Biophysica Ada 72:619–629
    [Google Scholar]
  37. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 745463–5467
    [Google Scholar]
  38. Schell M. A., Roberts D. P., Denny T. P. 1988; Analysis of the Pseudomonas solanacearum polygalacturonase encoded by pglA and its involvement in phytopathogenicity. Journal of Bacteriology 170:4501–4508
    [Google Scholar]
  39. Seth A. 1984; A new method for linker ligation. Gene Analytical Techniques 1:99–103
    [Google Scholar]
  40. Shaw W. V. 1975; Chloramphenicol acetyltransferase from chloram-phenicol-resistant bacteria. Methods in Enzymology 43:737–759
    [Google Scholar]
  41. Stephens G. J., Wood R. K. S. 1975; Killing of protoplasts by soft-rot bacteria. Physiological Plant Pathology 5:165–181
    [Google Scholar]
  42. Tabor S., Richardson C. C. 1985; A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proceedings of the National Academy of Sciences of the United States of America 821074–1078
    [Google Scholar]
  43. Thuring R. W. J., Sanders J. P. M., Borst P. 1975; A freeze-queeze method for recovering large DNA from agarose gels. Analytical Biochemistry 66:213–220
    [Google Scholar]
  44. Von Heijne G. 1985; Signal sequences. The limits of variation. Journal of Molecular Biology 184:99–105
    [Google Scholar]
  45. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains. Nucleotide sequence of the M13mp18 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  46. Zink R. T., Chatterjee A. K. 1985; Cloning and expression in Escherichia coli of pectinase genes of Erwinia carotovora subsp. carotovora. Applied and Environmental Microbiology 49:714–717
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-1-131
Loading
/content/journal/micro/10.1099/00221287-137-1-131
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error