Construction of a derivative of Tn containing an outward-directed promoter and its use in Free

Abstract

Summary: Engineered variants of the transposon Tn have been widely used to obtain insertion mutations and transcriptional fusions in and other Gram-positive bacteria. We have developed a novel Tn-based methodology useful for isolation and characterization of mutants resulting from gene over-expression. A Tn variant was constructed which contains a strong out-facing promoter near one end, able to promote transcription of genes in the vicinity of its insertion target. This transposon, designated Tn, was tested in model conditions. Three Tn mutants of , with phenotypes presumed to result from gene over-expression, were analysed. Their phenotypes were shown to be due to transcription from the transposon promoter. In one mutant the promoter activated a gene, probably . The other two contained different insertions decryptifying a gene encoding -galactosidase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-1-107
1991-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/1/mic-137-1-107.html?itemId=/content/journal/micro/10.1099/00221287-137-1-107&mimeType=html&fmt=ahah

References

  1. Amory A., Kunst F., Aubert E., Klier, Rapoport G. 1987; Characterization of the sacQ genes from Bacillus licheniformis and Bacillus subtilis . Journal of Bacteriology 169:324–333
    [Google Scholar]
  2. Aymerich S., Gonzy-Treboul G., Steinmetz M. 1986; 5′-Noncoding region sacR is the target of all identified regulation affecting the levansucrase gene in Bacillus subtilis . Journal of Bacteriology 166:993–998
    [Google Scholar]
  3. Berg C., Berg D., Groisman E. 1989; Transposable elements and the genetic engineering of bacteria. In Mobile DNA pp. 879–925 Edited by Berg D., Howe M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7:1513–23
    [Google Scholar]
  5. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heynecker H. L., Boyer H. W., Crosa J. H., Falkow S. 1977; Construction and characterization of new cloning vehicles. II. A multipurpose system. Gene 2:95–113
    [Google Scholar]
  6. Crutz A. M., Steinmetz M., Aymerich S., Richter R., Le Coq D. 1990; Induction of levansucrase in Bacillus subtilis: an antitermination mechanism negatively controlled by the phospho-transferase system. Journal of Bacteriology 172:1043–1050
    [Google Scholar]
  7. Errington J., Vogt C. 1990; Isolation and characterization of mutations in the gene encoding an endogenous Bacillus subtilis β-galactosidase and its regulator. Journal of Bacteriology 172:488–490
    [Google Scholar]
  8. Horinouchi S., Weisblum B. 1982; Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible resistance to chloramphenicol. Journal of Bacteriology 150:815–825
    [Google Scholar]
  9. Le Coq D., Aymerich S., Steinmetz M. 1991; Dual effect of a Tn917 insertion into the Bacillus subtilis sacX gent. Journal of General Microbiology 137:101–106
    [Google Scholar]
  10. Losick R., Youngman P., Piggot P. 1986; Genetics of endospore formation in Bacillus subtilis . Annual Review of Genetics 30:625–669
    [Google Scholar]
  11. Miller J. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  12. Nagami Y., Tanaka T. 1986; Molecular cloning and nucleotide sequence of a DNA fragment from Bacillus natto that enhances production of extracellular proteases and levansucrase in Bacillus subtilis . Journal of Bacteriology 166:20–28
    [Google Scholar]
  13. Perego M., Spiegelman G. B., Hoch J. A. 1988; Structure of the gene for the transition state regulator, abrB: regulator synthesis is controlled by the spoOA sporulation gene in Bacillus subtilis . Molecular Microbiology 2:689–699
    [Google Scholar]
  14. Perkins J. B., Youngman P. J. 1986; Construction and properties of Tn917-lac, a transposon derivative that mediates transcriptional gene fusions in Bacillus subtilis . Proceedings of the National Academy of Sciences of the United States of America 83140–144
    [Google Scholar]
  15. Schaeffer P., Millet J., Aubert J. P. 1965; Catabolite repression of bacterial sporulation. Proceedings of the National Academy of Sciences of the United States of America 54704–711
    [Google Scholar]
  16. Shaw J., Clewell D. 1985; Complete nucleotide sequence of macrolide lincosamide-streptogramin B-resistance transposon Tn917 in Streptococcus faecalis . Journal of Bacteriology 164:782–796
    [Google Scholar]
  17. Steinmetz M., Aymerich S. 1990; The Bacillus subtilis sac-deg system: how and why?. Genetics and Biochnology of Bacilli 3 Zukowski M., Ganesan A. T., Hoch J. A. New York: Academic Press (in the press);
    [Google Scholar]
  18. Steinmetz M., Le Coq D., Aymerich S. 1989; Induction by sucrose of saccharolytic enzymes in Bacillus subtilis: evidence for two partially interchangeable regulatory pathways. Journal of Bacteriology 171:1519–1523
    [Google Scholar]
  19. Trach K., Hoch J. A. 1989; The Bacillus subtilis spoOB stage 0 sporulation operon encodes an essential GTP-binding protein. Journal of Bacteriology 171:1362–1371
    [Google Scholar]
  20. Trieu-Cuot P., Klier A., Courvalin P. 1985; DNA sequences specifying the transcription of the streptococcal kanamycin resistance gene in E coli B. subtilis . Molecular and General Genetics 198:348–352
    [Google Scholar]
  21. Vandeyar M. A., Mackey C. J., Lipsky R. H., Zahler S. A. 1986; The HvBC-leu operon of Bacillus subtilis . Bacillus Molecular Genetics and Biotechnology Applications295–306 Ganesan A. T., Hoch J. A. New York: Academic Press;
    [Google Scholar]
  22. Yang M., Ferrari E., Chen E., Henner D. J. 1986; Identification of the pleiotropic sacQ gene of Bacillus subtilis . Journal of Bacteriology 166:113–119
    [Google Scholar]
  23. Yang M., Shimotsu H., Ferrari E., Henner D. J. 1987; Characterization and mapping of the Bacillus subtilis prtR gene. Journal of Bacteriology 169:434–437
    [Google Scholar]
  24. Youngman P. 1987; Plasmid vectors for recovering and exploiting Tn917 transpositions in Bacillus and other Gram-positive bacteria. Plasmids: a Practical Approach79–103 Hardy K. Oxford: IRL Press;
    [Google Scholar]
  25. Zukowski M. M., Miller L., Cogswell P., Chen K., Aymerich S., Steinmetz M. 1990; Nucleotide sequence of the sacS locus of Bacillus subtilis reveals the presence of two regulatory genes. Gene 90:153–155
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-1-107
Loading
/content/journal/micro/10.1099/00221287-137-1-107
Loading

Data & Media loading...

Most cited Most Cited RSS feed