1887

Abstract

Aklanonic acid, a substituted anthraquinone, is the earliest stable intermediate isolated so far in the biosynthesis of anthracycline antibiotics. Desalted, soluble cell extracts of sp. C5 and (ATCC 29050) converted aklanonic acid to ε-rhodomycinone in an -adenosyl--methionine- and NADPH-dependent sequence of reactions. Aklanonic acid was methylated to form aklanonic acid methyl ester (AAME), which was cyclized to form aklaviketone. Aklaviketone was reduced to aklavinone by an NADPH-linked reductase. When extracts of sp. C5 and were used, aklavinone was hydroxylated at C-11 by an NADPH- and oxygen-dependent reaction to form ε-rhodomycinone. Cell extracts of strains ATCC 31133 and 31671 converted aklanonic acid to aklavinone in the same manner, but neither of the strains hydroxylated aklavinone to ε-rhodomycinone. Mutants of sp. C5 blocked at steps in the conversion of aklanonic acid to aklavinone, and which accumulated aklanonic acid (SC5-39; ), AAME (SC5-138; ), and aklaviketone (SC5–159; ), lacked the expected enzymic activities. In a mutant (SC5–24; ) lacking aklaviketone reductase, but retaining aklavinone 11-hydroxylase activity, maggiemycin was formed as an apparent shunt product. An enzymic pathway for ε-rhodomycinone and maggiemycin formation is consistent with the data presented.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-136-9-1887
1990-09-01
2021-09-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/136/9/mic-136-9-1887.html?itemId=/content/journal/micro/10.1099/00221287-136-9-1887&mimeType=html&fmt=ahah

References

  1. Bartel P. L., Connors N. C., Strohl W. R. 1990a; Biosynthesis of anthracyclines: analysis of Streptomyces sp. C5 mutants blocked in daunomycin biosynthesis. Journal of General Microbiology 136:1877–1886
    [Google Scholar]
  2. Bartel P. L., Zhu C. -B., Lampel J. S., Dosch D. C., Connors N. C., Strohl W. R., Floss H. G. 1990b; Biosynthesis of anthraquinones by interspecies cloning of actinorhodin biosynthesis genes in streptomycetes: clarification of actinorhodin gene functions. Journal of Bacteriology 172: in the Press
    [Google Scholar]
  3. Cassinelli G., Rivola G., Ruggieri D., Arcamone F., Grein A., Merli S., Spalla C., Casazza A. M., Dimarco A., Pratesi G. 1982; New anthracycline glycosides: 4-O-demethyl-11-deoxy-daunorubicin and analogues from Streptomycespeucetius var. aureus. Journal of Antibiotics 35:176–183
    [Google Scholar]
  4. Dekleva M. L., Strohl W. R. 1987; Glucose-stimulated acidogenesis by Streptomyces peucetius. Canadian Journal of Microbiology 33:1129–1132
    [Google Scholar]
  5. Dekleva M. L., Titus J. A., Strohl W. R. 1985; Nutrient effects on anthracycline production by Streptomyces peucetius in a defined medium. Canadian Journal of Microbiology 31:287–294
    [Google Scholar]
  6. Eckardt K., Wagner C. 1988; Biosynthesis of anthracyclinones. Journal of Basic Microbiology 28:137–144
    [Google Scholar]
  7. Eckardt K., Schumann G., Grāfe U., Ihn W., Wagner C., Fleck W. F., Thrum H. 1985a; Preparation of labeled aklanonic acid and its bioconversion to anthracyclinones by mutants of Streptomyces griseus. Journal of Antibiotics 38:1096–1097
    [Google Scholar]
  8. Eckardt K., Tresselt D., Schumann G., Ihn W., Wagner C. 1985b; Isolation and chemical structure of aklanonic acid, an early intermediate in the biosynthesis of anthracyclines. Journal of Antibiotics 38:1034–1039
    [Google Scholar]
  9. Eckardt K., Schumann G., Tresselt D., Ihn W. 1988; Biosynthesis of anthracyclinones: isolation of a new early cyclization product aklaviketone. Journal of Antibiotics 41:788–793
    [Google Scholar]
  10. Fujiwara A., Hoshino T. 1983; Anthracycline antibiotics. CRC Critical Reviews in Biotechnology 3:133–157
    [Google Scholar]
  11. Hallam S. E., Malpartida F., Hopwood D. A. 1988; Nucleotide sequence, transcription and deduced function of a gene involved in polyketide antibiotic synthesis in Streptomyces coelicolor. Gene 74:305–320
    [Google Scholar]
  12. Hopwood D. A., Bibb M. J., Chater K. F., Kieser T., Bruton J. J., Kieser H. M., Lydiate D. J., Smith C. P., Ward J. M., Schrempf H. 1985 Genetic Manipulation of Streptomyces, a Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  13. Kitamura I., Tobe H., Yoshimoto A., Oki T., Nagahawa H., Takeuchi T., Umezawa H. 1981; Biosynthesis of aklavinone and aclacinomycins. Journal of Antibiotics 34:1498–1500
    [Google Scholar]
  14. Matsuzawa Y., Yoshimoto A., Shibamoto N., Tobe H., Oki T., Naganawa H., Takeuchi T., Umezawa H. 1981; New anthracycline metabolites from mutants strains of Streptomyces galilaeus MA144-M1. II. structure of 2-hydroxyaklavinone and new aklavinone glycosides. Journal of Antibiotics 34:959–964
    [Google Scholar]
  15. Mcguire J. C., Thomas M. C., Pandey R., Toussaint M., White R. J. 1980a; Biosynthesis of daunorubicin glycosides: analysis with blocked mutants. Advances in Biotechnology 3:117–122
    [Google Scholar]
  16. Mcguire J. C., Thomas M. C., Stroshane R. M., Hamilton B. K., White R. J. 1980b; Biosynthesis of daunorubicin glycosides: role of ε-rhodomycinone. Antimicrobial Agents and Chemotherapy 18:454–464
    [Google Scholar]
  17. Oki T., Kitamura I., Matsuzawa Y., Shibamoto N., Ogasawara T., Yoshimoto A., Inui T. 1979; Antitumor anthracycline antibiotics, aclacinomycin A and analogs. Journal of Antibiotics 32:801–819
    [Google Scholar]
  18. Pandey R., Toussaint M. 1980; High-performance liquid chromatography and thin-layer chromatography of anthracycline antibiotics. Separation and identification of components of the daunorubicin complex from fermentation broth. Journal of Chromatography 198:407–420
    [Google Scholar]
  19. Pandey R. C., Toussaint M. W., Mcguire J. C., Thomas M. C. 1989; Maggiemycin and anhydromaggiemycin: two novel anthracyclinone antitumor antibiotics. Journal of Antibiotics 42:1567–1577
    [Google Scholar]
  20. Schlegel B., Stengel C., Schumann G., Prauser H., Eckardt K. 1987; Aklanonic acid-producing mutants of Streptomyces galilaeus and Streptomyces peucetius var. caesius. Journal of Basic Microbiology 27:107–111
    [Google Scholar]
  21. Schumann G., Stengel C., Eckardt K., Ihn W. 1986; Biotransformation of aklanonic acid by blocked mutants of anthracycline-producing strains of Streptomyces galilaeus and Streptomyces peucetius. Journal of Basic Microbiology 26:249–255
    [Google Scholar]
  22. Shafiee A., Hutchinson C. R. 1987; Macrolide antibiotic biosynthesis: isolation and properties of two forms of 6-deoxyerythronolide B hydrolase from Saccharopolyspora erythraea (Streptomyces erythreus). Biochemistry 26:6204–6210
    [Google Scholar]
  23. Strohl W. R., Bartel P. L., Connors N. C., Zhu C. -B., Dosch D. C., Beale J. M. Jr Stutzman-Engwall K., Otten S. L., Hutchinson C. R. 1989; Biosynthesis of natural and hybrid polyketides by anthracycline-producing streptomycetes. In Genetics and Molecular Biology of Industrial Microorganisms pp. 68–84 Hershberger C. L., Queener S. W., Hegeman G. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  24. Stutzman, Engwall K. J., Hutchinson C. R. 1989; Multigene families for anthracycline antibiotic production in Streptomyces peucetius. Proceedings of the National Academy of Sciences of the United States of America 86:3135–3139
    [Google Scholar]
  25. Tobe H., Yoshimoto A., Ishikura T., Naganawa H., Takeuchi T., Umezawa H. 1982; New anthracyclinone metabolites from two blocked mutants of Streptomyces galilaeus MA144-M1. Journal of Antibiotics 35:1641–1645
    [Google Scholar]
  26. Vančurová I., Volc J., Flieger M., NeuĎil J., Novotná J., Vlach J., Behal V. 1988; Isolation of pure anhydrotetracycline oxygenase from Streptomyces aureofaciens. Biochemical Journal 253:263–267
    [Google Scholar]
  27. Wagner C., Eckardt K., Schumann G., Ihn W., Tresselt D. 1984; Microbial transformation of aklanonic acid, a potential early intermediate in the biosynthesis of anthracyclines. Journal of Antibiotics 37:691–692
    [Google Scholar]
  28. Wagner C., Eckardt K., Tresselt D., Ihn W., Schumann G., Fleck W. F. 1985; Leukaemomycin-geblockte Mutanten des Streptomyces griseus und ihre Pigmente. III. 11-Desoxydaunomycin- onderivative aus der Mutante ZIMET 43 699/G44. Journal of Basic Microbiology 25:687–693
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-136-9-1887
Loading
/content/journal/micro/10.1099/00221287-136-9-1887
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error