1887

Abstract

Ethanol at concentrations up to 5% (v/v) had no effect on the growth of , whereas concentrations over 7.5% were inhibitory. The major membrane phospholipids in cells growing aerobically in the absence of added ethanol were phosphatidylinositol, phosphatidylcholine and phosphatidyl-ethanolamine. Oleic acid (18:1) was the main fatty acid. When ethanol (7.5%) was added to aerobically growing cultures, the phosphatidylinositol content increased, whereas the 18:1 content decreased. Similar changes were observed in the membrane phospholipids of cells grown anaerobically without ethanol. However, the presence of ethanol in anaerobically growing cultures had an opposite effect on fatty acids, as the 18:1 content increased. The results support the idea that ethanol tolerance in may be connected with a high content of 18:1 fatty acids, and with the ability to maintain a high rate of phospholipid biosynthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-136-7-1271
1990-07-01
2021-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/136/7/mic-136-7-1271.html?itemId=/content/journal/micro/10.1099/00221287-136-7-1271&mimeType=html&fmt=ahah

References

  1. Amerine M. A., Berg H. W., Cruess W. V. 1972; The molds and yeast of grapes and wine. In Technology of Wine Making pp. 151–176 Westport, Connecticut: AVI Publishing Company;
    [Google Scholar]
  2. Amore T., Stewart G. G. 1987; Ethanol tolerance of yeast. Enzyme and Microbial Technology 9:322–330
    [Google Scholar]
  3. Atkinson K. D., Fogel S., Henry S. A. 1980; Yeast mutant defective in phosphatidylserine synthesis. Journal of Biological Chemistry 255:6653–6661
    [Google Scholar]
  4. Bartlett G. R. 1959; Phosphorus assay in column chromatography. Journal of Biological Chemistry 234:466–468
    [Google Scholar]
  5. Beaven M. J., Charpentier C., Rose A. H. 1982; Production and tolerance of ethanol in relation to phospholipid fatty-acyl composition in Saccharomyces cerevisiae . Journal of General Microbiology 128:1447–1455
    [Google Scholar]
  6. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37:911–917
    [Google Scholar]
  7. Bloomfield D. K., Bloch K. 1958; The role of oxygen in the biosynthesis of unsaturated fatty acids. Biochimica et BiophysicaActa 30:220–221
    [Google Scholar]
  8. Buttke T. M., Ingram L. O. 1978; Mechanism of ethanol-induced changes in lipid composition of E. coli. Inhibition of saturated fatty acid synthesis in vivo . Biochemistry 17:637–643
    [Google Scholar]
  9. Carey V. C., Ingram L. O. 1983; Lipid composition of Z. mobilis.Effects of ethanol and glucose. Journal of Bacteriology 154:1291–1300
    [Google Scholar]
  10. Casey G. P., Ingledew W. M. 1986; Ethanol tolerance in yeasts. Critical Reviews in Microbiology 13:219–280
    [Google Scholar]
  11. Dickinson D., Isenberg I. 1982; Preparation of spheroplasts of Schizosaccharomyces pombe . Journal of General Microbiology 128:651–654
    [Google Scholar]
  12. Dombek K. M., Ingram L. O. 1984; Effects of ethanol on the Escherichia coli plasma membrane. Journal of Bacteriology 157:223–239
    [Google Scholar]
  13. Fernadez S., Homann M. J., Henry S. A., Carman G. M. 1986; Metabolism of the phospholipid precursor inositol and its relationship to growth and viability in the natural auxotroph S. pombe . Journal of Bacteriology 166:779–786
    [Google Scholar]
  14. Folch J., Lees M., Sloane-Stanley G. H. 1957; A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226:497–509
    [Google Scholar]
  15. Greenberg M. L., Klig L. S., Letts V. A., Loewy B. S., Henry S. A. 1983; Yeast mutant defective in phosphatidylcholine synthesis. Journal of Bacteriology 153:791–799
    [Google Scholar]
  16. Gutz H., Heslot H., Leopold U., Loprieno N. 1974 Schizosaccharomyces pombe. In Handbook of Genetics 1 pp. 395–446 King R. C. Edited by New York: Plenum Press;
    [Google Scholar]
  17. Hunter K., Rose A. H. 1972; Lipid composition of Saccharomyces cerevisiae is influenced by growth temperature. Biochimica et Biophysica Acta 260:639–653
    [Google Scholar]
  18. Jackson E. M., Mott G. E., Hoppens C., Mcmanus L. M., Weintraub S. T., Ludwig J. C., Pinckard R. N. 1984; High performance liquid chromatography of platelet-activating factors. Journal of Lipid Research 25:753–757
    [Google Scholar]
  19. Johnston P. A., Coddington A. 1984; Drug resistance in the fission yeast S. pombe. Pleiotropic mutations affecting the oleic acid and sterol composition of cell membranes. Current Genetics 8:37–43
    [Google Scholar]
  20. Jollow D., Kellerman G. M., Linnane A. W. 1968; The biogenesis of mitochondria. III. The lipid composition of aerobically and anaerobically grown S. cerevisiae as related to the membrane systems of the cells. Journal of Cell Biology 37:221–230
    [Google Scholar]
  21. Ingram L. O. 1976; Adaptation of membrane lipids to alcohols. Journal of Bacteriology 125:670–678
    [Google Scholar]
  22. Ingram L. O. 1977; Preferential inhibition of phosphatidylethanolamine synthesis in E. coli by alcohols. Canadian Journal of Microbiology 23:779–789
    [Google Scholar]
  23. Ingram L. O., Buttke T. M. 1984; Effects of alcohols on microorganisms. Advances in Microbial Physiology 25:253–300
    [Google Scholar]
  24. Kates M., Kushner D. J., James A. T. 1962; The lipid composition of Bacillus cereus as influenced by the presence of alcohols in the culture medium. Canadian Journal of Biochemistry and Physiology 40:83–94
    [Google Scholar]
  25. Koutinas A., Kanelaki M., Lykourghiotis A., Typas M. A., Drainas C. 1988; Ethanol production by Zymomonas mobilis entrapped in alumina pellets. Applied Microbiology and Biotechnology 28:235–239
    [Google Scholar]
  26. Kovac L., Subik J., Russ G., Kollar K. 1967; On the relationship between respiratory activity and lipid composition of the yeast cell. Biochimica et Biophysica Acta 144:94–101
    [Google Scholar]
  27. Marinetti G. V. 1962; Chromatographic separation, identification and analysis of phosphatides. Journal of Lipid Research 3:1–17
    [Google Scholar]
  28. Morrison W. R., Smith L. M. 1964; Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. Journal of Lipid Research 5:600–608
    [Google Scholar]
  29. Nandini-Kishore S. G., Mattox S. M., Martin C. E., Thompson G. A. Jr 1979; Membrane changes during growth of Tetrahymena in the presence of ethanol. Biochimica et Biophysica Acta 551:315–327
    [Google Scholar]
  30. Rigomier D., Bohin J. P., Lubochinsky B. 1980; Effects of ethanol and methanol on lipid metabolism in Bacillus subtilis . Journal of General Microbiology 121:139–149
    [Google Scholar]
  31. Rose A. M. 1980; Recent research on industrially important strains of Saccharomyces cerevisiae . In Biology and Activity of Yeast pp. 103–121 Skinner F. A., Passmore S. M., Davenport R. R. Edited by London: Academic Press;
    [Google Scholar]
  32. Schibeci A., Rattray J. B. M., Kidby D. K. 1973; Isolation and identification of yeast plasma membrane. Biochimica et Biophysica Acta 311:15–25
    [Google Scholar]
  33. White G. L., Hawthorne J. N. 1970; Phosphatidic acid and phosphatidylinositol metabolism in Schizosaccharomyces pombe . Biochemical Journal 117:203–213
    [Google Scholar]
  34. Vaskovsky V. E., Kostetsky E. Y. 1968; Modified spray for the detection of phospholipids on thin layer chromatography. Journal of Lipid Research 9:396
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-136-7-1271
Loading
/content/journal/micro/10.1099/00221287-136-7-1271
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error