Discovery of an insertion sequence, IS, from and its relatedness to other transposable elements from actinomycetes Free

Abstract

We have identified an insertion sequence, IS, present in at one copy per genome. The element was discovered as a 1·4 kb insertion into the multicopy plasmid pIJ702 after propagation in . The nucleotide sequence of IS and the flanking sequences from pIJ702 have been determined. The junctions with pIJ702 show no target site duplication and there are no inverted repeats at the ends of the element. One putative coding open reading frame of 1197 bp was identified which would code for a protein product of 399 amino acids. This protein resembles deduced integrase/transposase proteins specified by three other transposable elements of actinomycetes: IS and the mini-circle from A3(2), and - most particularly - IS of . Two regions that are relatively conserved among these gene products show features found in similar positions in many reverse transcriptases. IS and IS are also closely similar in their general organization and (apparently) in their insertion site specificity, whereas IS and the mini-circle are quite different in these features.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-136-7-1251
1990-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/136/7/mic-136-7-1251.html?itemId=/content/journal/micro/10.1099/00221287-136-7-1251&mimeType=html&fmt=ahah

References

  1. Argos P. 1988; A sequence motif in many polymerases. Nucleic Acids Research 16:9909–9916
    [Google Scholar]
  2. Bailey C.R., Winstanley D.J. 1986; Inhibition of restriction in Streptomyces clavuligerus by heat treatment. Journal of General Microbiology 132:2945–2947
    [Google Scholar]
  3. Bibb M.J., Findlay P.R., Johnson M.W. 1984; The relationship between base composition and codon usage in bacterial genes and its use in the simple and reliable identification of protein coding sequences. Gene 30:157–166
    [Google Scholar]
  4. Birnboim H.C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7:1513–1523
    [Google Scholar]
  5. Bruton C.J., Chater K.F. 1987; Nucleotide sequence of IS110, an insertion sequence of Streptomyces coelicolor A3(2). Nucleic Acids Research 15:7053–7065
    [Google Scholar]
  6. Chater K.F., Bruton C.J., Foster S.G., Tobek I. 1985; Physical and genetic analysis of IS110 a transposable element of Streptomyces coelicolor A3(2). Molecular and General Genetics 200:235–239
    [Google Scholar]
  7. Chater K.F., Henderson D.J., Bibb M.J., Hopwood D.A. 1988; Genome flux in Streptomyces coelicolor and other streptomyces and its possible relevance to the evolution of mobile antibiotic resistance determinants. In Transposition, pp 7–42 Kingsman A. J., Chater K. F., Kingsman S. M. Edited by Cambridge: Cambridge University Press;
    [Google Scholar]
  8. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the Vax. Nucleic Acids Research 12:387–395
    [Google Scholar]
  9. Green E.P., Tizard M.L.V., Moss M.T., Thompson J., Winterbourne D.J., McFadden J.J., Hermon-Taylor J. 1989; Sequence and characteristics of IS900, an insertion element identified in a human Crohn’s disease isolate of Mycobacterium paratuberculosis . Nucleic Acids Research 17:9063–9073
    [Google Scholar]
  10. Gringauz E., Orle K.A., Waddell C.S., Craig N.L. 1988; Recognition of Escherichia coli attTn7 by transposon Tn7: lack of specific sequence requirements at the point of Tn7 insertion. Journal of Bacteriology 170:2832–2840
    [Google Scholar]
  11. Henderson D.J., Lydiate D.J., Hopwood D.A. 1989; Structural and functional analysis of the mini-circle, a transposable element of Streptomyces coelicolor A3(2). Molecular Microbiology 3:1307–1318
    [Google Scholar]
  12. Higgins D.G., Sharp P.M. 1988; clustal: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244
    [Google Scholar]
  13. Hütter R., Eckhardt T. 1988; Genetic manipulation. In Actinomycetes in Biotechnology, pp 89–184 Good-fellow M., Williams S. T., Mordarski M. Edited by London: Academic Press;
    [Google Scholar]
  14. Hopwood D.A., Bibb M.J., Chater K.F., Kieser T., Bruton C.J., Kieser H.M., Lydiate D.J., Smith C.P., Ward J.M., Schrempf H. 1985 Genetic Manipulation of Streptomyces - a Laboratory Manual. Norwich:: John Innes Foundation.;
    [Google Scholar]
  15. Iida S., Meyer J., Arber W. 1983; Prokaryotic IS elements. In Mobile Genetic Elements, pp 159–221 Shapiro J. A. Edited by New York: Academic Press;
    [Google Scholar]
  16. Inouye S., Hsu M.-Y., Eagle S., Inouye M. 1989; Reverse transcriptase associated with the biosynthesis of the branched RNA-linked msDNA in Myxococcus xanthus . Cell 56:709–717
    [Google Scholar]
  17. Jensen S.E., Westlake D.W.S., Wolfe S. 1982; Cyclization of δ-(l- α -aminoadipyl)-l-cysteinyl-d-valine to penicillins by cell free extracts of Streptomyces clavuligerus . Journal of Antibiotics 35:483–490
    [Google Scholar]
  18. Jensen S.E., Leskiw B.K., Vining L.C., Aharonowitz Y., Westlake D.W.S., Wolfe S. 1986; Purification of isopenicillin N synthetase from Streptomyces clavuligerus . Canadian Journal of Microbiology 32:953–958
    [Google Scholar]
  19. Johnson M.S., McClure M.A., Feng D.-F., Gray J., Doolittle R.F. 1986; Computer analysis of retroviralpol genes: assignment of enzymatic function to specific sequences and homologies with non-viral enzymes. Proceedings of the National Academy of Sciences of the United States of America 83:7648–7652
    [Google Scholar]
  20. Katz E., Thompson C.J., Hopwood D.A. 1983; Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans . Journal of General Microbiology 129:2703–2714
    [Google Scholar]
  21. Kendall K.J., Cohen S.N. 1988; Complete nucleotide sequence of the Streptomyces lividans plasmid pIJ101 and correlation of the sequence with genetic properties. Journal of Bacteriology 170:4634–4651
    [Google Scholar]
  22. Kieser T. 1984; Factors affecting the isolation of CCC DNA from Streptomyces lividans and Escherichia coli . Plasmid 12:19–36
    [Google Scholar]
  23. Lampson B.C., Sun J., Hsu M.-Y., Vallejo-Ramirez J., Inouye S., Inouye M. 1989; Reverse transcriptase in a clinical strain of Escherichia coli: production of branched RNA-linked msDNA. Science 243:1033–1038
    [Google Scholar]
  24. Larder B.A., Purifoy D.J.M., Powell K.L., Darby G. 1987; Site-specific mutagenesis of AIDS virus reverse transcriptase. Nature; London: 327:716–712
    [Google Scholar]
  25. Leskiw B.K., Aharonowitz Y., Mevarech M., Wolfe S., Vining L.C., Westlake D.W.S., Jensen S.E. 1988; Cloning and nucleotide sequence determination of the isopenicillin N synthetase gene from Streptomyces clavuligerus . Gene 62:187–196
    [Google Scholar]
  26. Lim D., Maas W.K. 1989; Reverse transcriptase-dependent synthesis of a covalently linked branched DNA-RNA compound in Escherichia coli B. Cell 56:891–904
    [Google Scholar]
  27. Lipman D.J., Pearson W.R. 1985; Rapid and sensitive protein similarity searches. Science 227:1435–1441
    [Google Scholar]
  28. Lydiate D.J., Ikeda H., Hopwood D.A. 1986; A 2·6 kb DNA sequence of Streptomyces coelicolor A3(2) which functions as a transposable element. Molecular and General Genetics 203:79–88
    [Google Scholar]
  29. Lydiate D.J., Ashby A.M., Henderson D.J., Kieser H.M., Hopwood D.A. 1989; Physical and genetic characterization of linear copies of the Streptomyces coelicolor mini-circle. Journal of General Microbiology 135:941–955
    [Google Scholar]
  30. Maniatis T., Fritsch E.F., Sambrook J. 1982 Molecular Cloning- a Laboratory Manual. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  31. Mills D.R., Kramer F.R. 1979; Structure-independent nucleotide sequence analysis. Proceedings of the National Academy of Sciences of the United States of America 76:2232–2235
    [Google Scholar]
  32. Mizusawa S., Nishimura S., Seela F. 1986; Improvement of the dideoxy chain termination method of DNA sequencing by use of deoxy-7-deazaguanosine triphosphate in place of dGTP. Nucleic Acids Research 14:1319–1324
    [Google Scholar]
  33. Murphy E. 1988; Transposable elements in Staphylococcus . In Transposition, pp 59–89 Kingsman A. J., Chater K. F., Kingsman S. M. Edited by Cambridge: Cambridge University Press;
    [Google Scholar]
  34. O’Sullivan J., Aplin R.T., Stevens C.M., Abraham E.P. 1979; Biosynthesis of a 7-α-methoxycephalosporin. Biochemical Journal 179:47–52
    [Google Scholar]
  35. Patarca R., Hasteltine W.A. 1984; Sequence similarity among retroviruses - erratum. Nature London: 309:728
    [Google Scholar]
  36. Sanger F., Nicklen S., Coulson A.R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74:5463–5467
    [Google Scholar]
  37. Vieira J., Messing J. 1987; Production of single-stranded plasmid DNA. Methods in Enzymology 153:3–11
    [Google Scholar]
  38. Xiong Y., Eickbush T.H. 1988; Similarity of reverse transcriptase-like sequences of viruses, transposable elements, and mitochondrial introns. Molecular Biology of Evolution 5:675–690
    [Google Scholar]
  39. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-136-7-1251
Loading
/content/journal/micro/10.1099/00221287-136-7-1251
Loading

Data & Media loading...

Most cited Most Cited RSS feed