1887

Abstract

Methods have been developed for chemical transformation and electro-transformation (electroporation) of vegetative cells of with supercoiled plasmid DNA. Chemical transformation was dependent on incubation in Tris/HCl with osmotic support and transformation with plasmid DNA was effected by treatment with polyethylene glycol 3350. Maximum transformation frequencies were 3·8 × 10 transformant c.f.u. per viable c.f.u. (1 × 10 c.f.u. per g DNA). Optimal frequencies were pH dependent and were affected by growth-medium composition. Transformation was not observed with linear or multimeric plasmid DNA. Electro-transformation of using high field intensity electroporation was dependent on the composition of both the growth medium and the electroporation buffer. Maximum electro-transformation frequencies were 5·3 × 10 c.f.u. per viable c.f.u. (2.6 × 10 c.f.u. per g DNA). The use of early exponential phase cells was critical to both procedures and the maximum efficiency (c.f.u. per g DNA) of each system was strain dependent under the conditions described.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-136-7-1211
1990-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/136/7/mic-136-7-1211.html?itemId=/content/journal/micro/10.1099/00221287-136-7-1211&mimeType=html&fmt=ahah

References

  1. Bartkus J.M., Leppla S.H. 1989; Transcriptional regulation of the protective antigen gene of Bacillus anthracis. Infection and Immunity 57:2295–2300
    [Google Scholar]
  2. Battisti L., Green B.D., Thorne C.B. 1985; Mating system for transfer of plasmids among Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis. Journal of Bacteriology 162:543–550
    [Google Scholar]
  3. Bingham A.H.A., Bruton C.J., Atkinson T. 1980; Characterization of Bacillus stearothermophilus plasmid pAB124 and construction of deletion variants. Journal of General Microbiology 119:109–115
    [Google Scholar]
  4. Bragg T., Robertson D.L. 1989; Nucleotide sequence and analysis of the lethal factor gene (lef) from Bacillus anthracis. Gene 81:45–54
    [Google Scholar]
  5. Chang S., Cohen S.N. 1979; High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Molecular and General Genetics 168:111–115
    [Google Scholar]
  6. Dancer B.N. 1981; Control of sporulation in fused protoplasts of Bacillus subtilis 168. Journal of General Microbiology 126:29–36
    [Google Scholar]
  7. Green B.D., Battisti L., Thorne C.B. 1989; Involvement of Tn4430 in transfer of Bacillus anthracis plasmids mediated by Bacillus thuringiensis plasmid pX012. Journal of Bacteriology 171:104–113
    [Google Scholar]
  8. Gryczan T.J., Contente S., Dubnau D. 1978; Characterisation of Staphylococcus aureus plasmids introduced by transformation into Bacillus subtilis. Journal of Bacteriology 134:318–329
    [Google Scholar]
  9. Hardy K.G. 1985; Bacillus cloning methods. In DNA Cloning, a Practical Approach II pp. 1–17 Glover D.M. Edited by Washington, DC: IRL Press;
    [Google Scholar]
  10. Heierson A., Landen R., Lovgren A., Dalhammer G., Boman H.G. 1987; Transformation of vegetative cells of Bacillus thuringiensis by plasmid DNA. Journal of Bacteriology 169:1147–1152
    [Google Scholar]
  11. Koehler T.M., Thorne C.B. 1987; Bacillus subtilis (natto) plasmid pLS20 mediates interspecies plasmid transfer. Journal of Bacteriology 169:5271–5278
    [Google Scholar]
  12. Leppla S.H., Friedlander A.M., Cora E.M. 1988; Proteolytic activation of anthrax toxin bound to cellular receptors. In Bacterial Protein Toxins: 3rd European Workshop-1987 pp. 111–112 Fehrenbach F.J., Alouf J.E., Falmagne P., Goebel W., Jeljaszewicz J., Jurgens D., Rappuoli R. Edited by Stuttgart: Gustav Fischer;
    [Google Scholar]
  13. Little S.F., Knudson G.B. 1986; Comparative efficacy of Bacillus anthracis live spore vaccine and protective antigen vaccine against anthrax in the guinea pig. Infection and Immunity 52:509–512
    [Google Scholar]
  14. Makino S., Sasakawa C., Uchida I., Terakado N., Yoshikawa M. 1987; Transformation of a cloning vector pUBl 10 into Bacillus anthracis. FEMS Microbiology Letters 44:45–48
    [Google Scholar]
  15. Makino S., Sasakawa C., Uchida I., Terakado N., Yoshikawa M. 1988; Cloning and CO2 dependent expression of the genetic region for encapsulation from Bacillus anthracis. Molecular Microbiology 2:371–376
    [Google Scholar]
  16. Makino S., Uchida I., Terakado N., Sasakawa C., Yoshikawa M. 1989; Molecular characterisation and protein analysis of the cap region, which is essential for encapsulation in Bacillus anthracis. Journal of Bacteriology 171:722–730
    [Google Scholar]
  17. Maniatis T., Fritsch E.F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual, 7th ed.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Mock M., Labruyere E., Glaser P., Dancin A., Ullman A. 1988; Cloning and expression of the calmodulin sensitive Bacillus anthracis adenylate cyclase in Escherichia coli. Gene 64:277–284
    [Google Scholar]
  19. Primrose S.B., Ehrlich S.D. 1981; Isolation of plasmid deletion mutants and study of their stability. Plasmid 6:193–201
    [Google Scholar]
  20. Reddy A., Battisti L., Thorne C.B. 1987; Identification of selftransmissible plasmids in four Bacillus thuringiensis subspecies. Journal of Bacteriology 169:5263–5270
    [Google Scholar]
  21. Robertson D.L., Leppla S.H. 1986; Molecular cloning and expression in Escherichia coli of the lethal factor gene of Bacillus anthracis. Gene 44:71–78
    [Google Scholar]
  22. Robertson D.L., Todd-Tippetts M., Leppla S.H. 1988; Nucleotide sequence of the Bacillus anthracis edema factor gene (cya) \ a calmodulin-dependent adenylate cyclase. Gene 73:363–371
    [Google Scholar]
  23. Rufhel R.E., Robillard N.J., Thorne C.B. 1984; Interspecies transduction of plasmids among Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis. Journal of Bacteriology 157:708–711
    [Google Scholar]
  24. Singh Y., Chaudhary V.K., Leppla S.H. 1989; A deleted variant of Bacillus anthracis protective antigen is non-toxic and blocks anthrax toxin action in vivo. Journal of Biological Chemistry 264:19103–19107
    [Google Scholar]
  25. Smith H., Keppie J. 1954; Observations on experimental anthrax: demonstration of a specific lethal factor produced in vivo by Bacillus anthracis. Nature; London: 173869–870
    [Google Scholar]
  26. Sterne M. 1937; The effects of different CO2 concentrations on the growth of virulent anthrax strains. Pathogenicity and immunity tests on guinea pigs and sheep with anthrax variants derived from virulent strains. Onderstepoort, Journal of Veterinary Science and Animal Industry 9:49–67
    [Google Scholar]
  27. Takahashi W., Yamagata H., Yamaguchi K., Tsugagoshi N., Udaka S. 1983; Genetic transformation of Bacillus brevis 47 a protein secreting bacterium, by plasmid DNA. Journal of Bacteriology 156:1130–1134
    [Google Scholar]
  28. Todd-Tippetts M., Robertson D.L. 1988; Molecular cloning and expression of the Bacillus anthracis Edema Factor toxin gene: a calmodulin dependent adenylate cyclase. Journal of Bacteriology 170:2263–2266
    [Google Scholar]
  29. Vodkin M.H., Leppla S.H. 1983; Cloning of the protective antigen gene of Bacillus anthracis. Cell 34:693–697
    [Google Scholar]
  30. Welkos S.L., Lowe J.R., Eden-Mckutchan F., Vodkin M., Leppla S.H., Schmidt J.J. 1988; Sequence and analysis of the DNA encoding protective antigen of Bacillus anthracis. Gene 69:287–300
    [Google Scholar]
  31. Zwartouw H., Smith H. 1956; Polyglutamic acid from Bacillus anthracis grown in vivo: structure and aggressin activity. Biochemical Journal 63:437–442
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-136-7-1211
Loading
/content/journal/micro/10.1099/00221287-136-7-1211
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error