Pathways of arginine biosynthesis in extreme thermophilic archaeo-and eubacteria Free

Abstract

The pathway of arginine biosynthesis was investigated in two thermophilic eubacteria, and , and in two thermophilic archaeobacteria, and . In the first three organisms, arginine biosynthesis proceeds via -acetylated intermediates as in mesophilic microorganisms. Only the enzymes catalysing the three last steps of the pathway could be detected in . The two eubacterial strains possess an ornithine acetyltransferase and are thus able to recycle the acetyl group from acetylornithine to glutamate. The archaeobacterium, , uses the linear pathway in which the formation of ornithine is mediated by the hydrolytic enzyme acetylornithinase. Repression of enzyme synthesis by arginine was observed for most of the enzymes tested in and . Feedback inhibition by arginine was shown only on the ornithine acetyltransferase from . This inhibition pattern is of interest since it would be the first example of control of arginine biosynthesis at this particular step. Data concerning the thermal stability of the arginine biosynthetic enzymes are presented.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-136-7-1177
1990-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/136/7/mic-136-7-1177.html?itemId=/content/journal/micro/10.1099/00221287-136-7-1177&mimeType=html&fmt=ahah

References

  1. Abdelal A.T., Nainan O.V. 1979; Regulation of N-acetylglutamate synthesis in Salmonella typhimurium. . Journal of Bacteriology 137:1040–1042
    [Google Scholar]
  2. Balch W.E., Wolfe R.S. 1976; New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Applied and Environmental Microbiology 32:781–791
    [Google Scholar]
  3. Cho H.Y., Tanizawa K., Soda K. 1987; Thermostable aminoacylase from Bacillus thermoglucosidus: purification and characterization. Agricultural and Biological Chemistry 51:2793–2800
    [Google Scholar]
  4. Cho H.Y., Tanizawa K., Tanaka H., Soda K. 1988; Thermostable dipeptidase from Bacillus stearothermophilus: its purification, characterization, and comparison with aminoacylase. Journal of Biochemistry 103:622–628
    [Google Scholar]
  5. Cunin R., Glansdorff N., Piérard A., Stalon V. 1986; Biosynthesis and metabolism of arginine in bacteria. Microbiological Reviews 50:314–352
    [Google Scholar]
  6. Degryse E. 1974; Evidence that yeast acetylomithinase is a carboxypeptidase. FEBS Letters 43:285–288
    [Google Scholar]
  7. Degryse E., Glansdorff N., Piérard A. 1976; Arginine biosynthesis and degradation in an extreme thermophile, strain Z05. Archives Internationales de Physiologie et de Biochimie 84:599–601
    [Google Scholar]
  8. Degryse E., Glansdorff N., Piérard A. 1978; A comparative analysis of extreme thermophilic bacteria belonging to the genus Thermus. . Archives of Microbiology 117:189–196
    [Google Scholar]
  9. Fiala G., Stetter K.O. 1986; Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C. Archives of Microbiology 145:56–61
    [Google Scholar]
  10. Fiala G., Stetter K.O., Jannasch H.W., Langworthy T.A., Madon J. 1986; Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98 °C. Systematic and Applied Microbiology 8:106–113
    [Google Scholar]
  11. Haas D., Kurer V., Leisinger T. 1972; N-Acetylglutamate synthase of Pseudomonas aeruginosa. An assay in vitro and feedback inhibition by arginine. European Journal of Biochemistry 31:290–295
    [Google Scholar]
  12. Haas D., Holloway B.W., Schambøck A., Leisinger T. 1977; The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa. . Molecular and General Genetics 154:7–22
    [Google Scholar]
  13. Hilger F., Simon J.P., Stalon V. 1979; Yeast argininosuccinate synthetase. Purification; structural and kinetic properties. European Journal of Biochemistry 94:153–163
    [Google Scholar]
  14. Huber R., Langworthy T.A., Kønig H., Thomm M., Woese C.R., Sleytr U.W., Stetter K.O. 1986; Thermotoga maritimasp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Archives of Microbiology 144:324–333
    [Google Scholar]
  15. Legrain C., Stalon V. 1976; Ornithine carbamoyltransferase from Escherichia coli W. Purification, structure and steady-state kinetic analysis. European Journal of Biochemistry 63:289–301
    [Google Scholar]
  16. Legrain C., Glansdorff N., Piérard A. 1989; Enzymes of arginine biosynthesis in a thermophilic archaebacterium, Sulfolobus solfataricus. . Archives Internationales de Physiologie et de Biochimie 97:B103
    [Google Scholar]
  17. Leisinger T., Haas D. 1975; N-Acetylglutamate synthase of Escherichia coli: regulation of synthesis and activity by arginine. Journal of Biological Chemistry 250:1690–1693
    [Google Scholar]
  18. Meile L., Leisinger T. 1984; Enzymes of arginine biosynthesis in methanogenic bacteria. Experientia 40:899–900
    [Google Scholar]
  19. Piérard A., Glansdorff N., Mergeay M., Wiame J.M. 1965; Control of the biosynthesis of carbamoylphosphate in Escherichia coli. . Journal of Molecular Biology 14:23–36
    [Google Scholar]
  20. Piérard A., Glansdorff N., Yashphe J. 1972; Mutations affecting uridine monophosphate pyrophosphorylase or the argRgene in Escherichia coli. Effects on carbamoylphosphate and pyrimidine biosynthesis and on uracil uptake. Molecular and General Genetics 118:235–245
    [Google Scholar]
  21. Stalon V., Ramos F., Piérard A., Wiame J.M. 1972; Regulation of the catabolic ornithine carbamoyltransferase of Pseudomonasfluorescens. A comparison with the anabolic transferase and with a mutationally modified catabolic transferase. European Journal of Biochemistry 29:25–35
    [Google Scholar]
  22. Stetter K.O. 1986; Diversity of extremely thermophilic archaebacteria. In Thermophiles: General, Molecular and Applied Microbiology, pp 39–74 Brock T.D. Edited by New York: John Wiley;
    [Google Scholar]
  23. Stetter K.O., Kønig H., Stackebrandt E. 1983; Pyrodictiumgen. nov., a new genus of submarine disc-shaped sulphur reducing archaebacteria growing optimally at 105 °C. Systematic and Applied Microbiology 4:535–551
    [Google Scholar]
  24. Theil E.C., Forsyth G.W., Jones E.E. 1969; Expression of the arginine regulon of Escherichia coli W: evidence for a second regulatory gene. Journal of Bacteriology 99:269–273
    [Google Scholar]
  25. Udaka S. 1966; Pathway-specific pattern of control of arginine biosynthesis in bacteria. Journal of Bacteriology 91:617–621
    [Google Scholar]
  26. Van de Casteele M., Legrain C., Piérard A., Glansdorff N. 1989; Purification and characterization of ornithine carbamoyltransferase of the extreme thermophilic eubacterium Thermus aquaticus. . Archives Internationales de Physiologie et de Biochimie 97:B115
    [Google Scholar]
  27. Vogel H.J., McLellan W.L. 1970; Acetylornithinase (Escherichia coli). . Methods in Enzymology 17A:265–269
    [Google Scholar]
  28. Vyas S., Maas W.K. 1963; Feedback inhibition of acetylglutamate synthetase by arginine in Escherichia coli. . Archives of Biochemistry and Biophysics 100:542–546
    [Google Scholar]
  29. Woese C.R. 1987; Bacterial evolution. Microbiological Reviews 51:221–271
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-136-7-1177
Loading
/content/journal/micro/10.1099/00221287-136-7-1177
Loading

Data & Media loading...

Most cited Most Cited RSS feed