Cobalamin-dependent 1,2-propanediol utilization by Free

Abstract

The enteric bacterium utilizes 1,2-propanediol as a sole carbon and energy source during aerobic growth, but only when the cells are also provided with cobalamin as a nutritional supplement. This metabolism is mediated by the cobalamin-dependent propanediol dehydratase enzyme pathway. Thirty-three insertion mutants were isolated that lacked the ability to utilize propanediol, but retained the ability to degrade propionate. This phenotype is consistent with specific blocks in one or more steps of the propanediol dehydratase pathway. Enzyme assays confirmed that propanediol dehydratase activity was absent in some of the mutants. Thus, the affected genes were designated (for defects in utilization). Seventeen mutants carried pdu:: lac operon fusions, and these fusions were induced by propanediol in the culture medium. All of the mutations were located in a single region (41 map units) on the chromosome between the (histidine biosynthesis) and branch I (cobalamin biosynthesis) operons. They were shown to be P22-cotransducible with a branch I marker at a mean frequency of 12%. Mutants that carried deletions of the genetic material between and also failed to utilize propanediol as a sole carbon source. Based upon the formation of duplications and deletions between different pairs of :: Mu dA insertions, the genes were transcribed in a clockwise direction relative to the genetic map.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-136-5-887
1990-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/136/5/mic-136-5-887.html?itemId=/content/journal/micro/10.1099/00221287-136-5-887&mimeType=html&fmt=ahah

References

  1. Abeles R.H., Lee H.A. Jr 1961; An intramolecular oxidation- reduction requiring a cobamide coenzyme. Journal of Biological Chemistry 236:2347–2350
    [Google Scholar]
  2. Anderson R.P., Roth J.R. 1978; Tandem chromosomal duplications in Salmonella typhimurium : fusion of histidine genes to novel promoters. Journal of Molecular Biology 119:147–166
    [Google Scholar]
  3. Björk G.R. 1987; Modification of stable RNA. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp. 719–731 Neidhardt F.C., Ingraham J.L., Low K.B., Magasanik B., Schaechter M., Umbarger H.E. Edited by Washington, DC:: American Society for Microbiology.;
    [Google Scholar]
  4. Björk G.R., Ericson J.U., Gustafsson C.E.D, Jönsson Y.H., Wikström P.M. 1987; Transfer RNA modification. Annual Review of Biochemistry 56:263–287
    [Google Scholar]
  5. Bochner B.R. 1984; Curing bacterial cells of lysogenic viruses by using UCB indicator plates. BioTechniques 2:234–240
    [Google Scholar]
  6. Casadaban M.J., Cohen S.N. 1979; Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proceedings of the National Academy of Sciences of the United States of America 76:4530–4533
    [Google Scholar]
  7. Casjens S., Hayden M. 1988; Analysis in vivo of the bacteriophage P22 headful nuclease. Journal of Molecular Biology 199:467–474
    [Google Scholar]
  8. Castilho B.A., Olfson P., Casadaban M.J. 1984; Plasmid insertion mutagenesis and lac gene fusion with mini-Mu bacteriophage transposons. Journal of Bacteriology 158:488–495
    [Google Scholar]
  9. Cauthen S.E., Foster M.A., Woods D.D. 1966; Methionine synthesis by extracts of Salmonella typhimurium. Biochemical Journal 98:630–635
    [Google Scholar]
  10. Chang G.W., Chang J.T. 1975; Evidence for the B12-dependent enzyme ethanolamine deaminase in Salmonella. Nature; London: 254150–151
    [Google Scholar]
  11. Childs J.D., Smith D.A. 1969; New methionine structural gene in Salmonella typhimurium. Journal of Bacteriology 100:377–382
    [Google Scholar]
  12. Chumley F.G., Menzel R., Roth J.R. 1979; Hfr formation directed by Tn10. Genetics 91:639–655
    [Google Scholar]
  13. Davis R.W., Botstein D., Roth J.R. 1980 Advanced Bacterial Genetics. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  14. Escalante-Semerena J.C., Roth J.R. 1987; Regulation of cobalamin biosynthetic operons in Salmonella typhimurium. Journal of Bacteriology 169:2251–2258
    [Google Scholar]
  15. Fernȥndez-Briera A., Garrido-Pertierra A. 1988; A degradation pathway of propionate in Salmonella typhimurium LT-2. Biochimie 70:757–768
    [Google Scholar]
  16. Forage R.G., Foster M.A. 1982; Glycerol fermentation in Klebsiella pneumoniae: functions of the coenzyme B12-dependent glycerol and did dehydratases. Journal of Bacteriology 149:413–419
    [Google Scholar]
  17. Frey B., McCloskey J., Kersten W., Kersten H. 1988; New function of vitamin B12: cobamide-dependent reduction of epoxy-queuosine to queuosine in tRNAs of Escherichia coli and Salmonella typhimurium. Journal of Bacteriology 170:2078–2082
    [Google Scholar]
  18. Hughes K.T., Cookson B.T., Ladika D., Olivera B.M., Roth J.R. 1983; 6-Aminonicotinamide-resistant mutants of Salmonella typhimurium. Journal of Bacteriology 154:1126–1136
    [Google Scholar]
  19. Hughes K.T., Roth J.R. 1984; Conditionally transposition-defective derivative of Mu d 1 (Amp Lac). Journal of Bacteriology 159:130–137
    [Google Scholar]
  20. Hughes K.T., Roth J.R. 1985; Directed formation of deletions and duplications using Mud(Ap, lac). Genetics 109:263–282
    [Google Scholar]
  21. Hughes K.T., Roth J.R. 1988; Transitory cis complementation: a method for providing transposition functions to defective transposons. Genetics 119:9–12
    [Google Scholar]
  22. Jacob F., Brenner S., Cuzin F. 1963; On the regulation of DNA replication in bacteria. Cold Spring Harbor Symposia on Quantitative Biology 28:329–348
    [Google Scholar]
  23. Jeter R.M., Roth J.R. 1987; Cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. Journal of Bacteriology 169:3189–3198
    [Google Scholar]
  24. Jeter R.M., Olivera B.M., Roth J.R. 1984; Salmonella typhimurium synthesizes cobalamin (vitamin B12) de novo under anaerobic growth conditions. Journal of Bacteriology 159:206–213
    [Google Scholar]
  25. Jeter R., Escalante-Semerena J.C., Roof D., Olivera B., Roth J. 1987; Synthesis and use of vitamin BI2. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp. 551–556 Neidhardt F. C., Ingraham J. L., Low K. B., Magasanik B., Schaechter M., Umbarger H. E. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  26. Lee H.A. Jr Abeles R.H. 1963; Purification and properties of dioldehydrase, an enzyme requiring a cobamide coenzyme. Journal of Biological Chemistry 238:2367–2373
    [Google Scholar]
  27. Mcgee D.E., Richards J.H. 1981; Purification and subunit characterization of propanediol dehydratase, a membrane-associated enzyme. Biochemistry 20:4293–4298
    [Google Scholar]
  28. Maloy S.R., Roth J.R. 1983; Regulation of proline utilization in Salmonella typhimurium: characterization of put :: :Mud(Ap, lac) operon fusions. Journal of Bacteriology 154:561–568
    [Google Scholar]
  29. Miller J.H. 1972 Experiments in Molecular Genetics. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  30. Obradors N., BadÍa J., BaldomÀ L., Aguilar J. 1988; Anaerobic metabolism of the l-rhamnose fermentation product 1,2-propanediol in Salmonella typhimurium. Journal of Bacteriology 170:2159–2162
    [Google Scholar]
  31. Paz M.A., Blumenfeld O.O., Rojkind M., Henson E., Furfine C., Gallop P.M. 1965; Determination of carbonyl compounds with N-methylbenzothiazolone hydrazone. Archives of Biochemistry and Biophysics 109:548–559
    [Google Scholar]
  32. Poznanskaja A.A., Tanizawa K., Soda K., Toraya T., Fukui S. 1979; Coenzyme B12-dependent diol dehydrase: purification, subunit heterogeneity, and reversible association. Archives of Biochemistry and Biophysics 194:379–386
    [Google Scholar]
  33. Roof D.M., Roth J.R. 1988; Ethanolamine utilization in Salmonella typhimurium. Journal of Bacteriology 170:3855–3863
    [Google Scholar]
  34. Sanderson K.E., Roth J.R. 1988; Linkage map of Salmonella typhimurium, edition VII. Microbiological Reviews 52:485–532
    [Google Scholar]
  35. Sawicki E., Hauser T.R., Stanley T.W., Elbert W. 1961; The 3-methyl-2-benzothiazolone hydrazone test.Sensitive new methods for the detection, rapid estimation, and determination of aliphatic aldehydes. Analytical Chemistry 33:93–96
    [Google Scholar]
  36. Schmid M.B., Roth J.R. 1983; Genetic methods for analysis and manipulation of inversion mutations in bacteria. Genetics 105:517–537
    [Google Scholar]
  37. Schmieger H. 1971; A method for detection of phage mutants with altered transducing ability. Molecular and General Genetics 110:378–381
    [Google Scholar]
  38. Schmieger H. 1972; Phage P22-mutants with increased or decreased transduction abilities. Molecular and General Genetics 119:75–88
    [Google Scholar]
  39. Silhavy T.J., Beckwith J.R. 1985; Uses of lac fusions for the study of biological problems. Microbiological Reviews 49:398–418
    [Google Scholar]
  40. Smith D.A. 1961; Some aspects of the genetics of methionineless mutants of Salmonella typhimurium. Journal of General Microbiology 24:335–353
    [Google Scholar]
  41. Smith H.O., Levine M. 1967; A phage P22 gene controlling integration of prophage. Virology 31:207–216
    [Google Scholar]
  42. Smith P.K., Krohn R.I., Hermanson G.T., Mallia A.K., Gartner F.H., Provenzano M.D., Fujimoto E.K., Goeke N.M., Olson B.J., Klenk D.C. 1985; Measurement of protein using bicinchoninic acid. Analytical Biochemistry 150:76–85
    [Google Scholar]
  43. Soda K. 1967; A spectrophotometric microdetermination of keto acids with 3-methyl-2-benzothiazolone hydrazone. Agricultural and Biological Chemistry 31:1054–1060
    [Google Scholar]
  44. Toraya T., Ushio K., Fukui S., Hogenkamp H.P.C. 1977; Studies on the mechanism of the adenosylcobalamin-dependent diol dehydrase reaction by the use of analogs of the coenzyme. Journal of Biological Chemistry 252:963–970
    [Google Scholar]
  45. Toraya T., Honda S., Fukui S. 1979; Fermentation of 1,2-propanediol and 1,2-ethanediol by some genera of Enterobacteriaceae, involving coenzyme B12-dependent diol dehydratase. Journal of Bacteriology 139:39–47
    [Google Scholar]
  46. Vogel H.J., Bonner D.M. 1956; Acetylomithinase of Escherichia coli: partial purification and some properties. Journal of Biological Chemistry 218:97–106
    [Google Scholar]
  47. Wegener W.S., Reeves H.C., Ajl S.J. 1967; Propionate oxidation in Escherichia coli. Archives of Biochemistry and Biophysics 121:440–442
    [Google Scholar]
  48. Wu T.T. 1966; A model for three-point analysis of random general transduction. Genetics 54:405–410
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-136-5-887
Loading
/content/journal/micro/10.1099/00221287-136-5-887
Loading

Data & Media loading...

Most cited Most Cited RSS feed