1887

Abstract

The structural gene for the precursor of the peptide antibiotic nisin was isolated and characterized. As with other lanthionine-containing antibiotics, nisin is synthesized as a pre-propeptide which undergoes post-translational modification to generate the mature antibiotic. The sequence data obtained agreed with those of precursor nisin genes isolated by other workers from different strains. Analysis of regions flanking the precursor nisin gene revealed the presence of a downstream open reading frame that may be involved in maturation of the precursor molecule. Nucleotide sequences characteristic of an IS element were located upstream of the nisin determinant. This element, termed IS, is present in multiple copies in the genome of . The nisin determinant of is a component of a large transmissible gene block that also encodes nisin resistance and sucrose-metabolizing genes. Gene probe experiments indicated that the nisin/sucrose gene block was located in the chromosome. Furthermore, the copy of IS identified adjacent to the precursor nisin gene lies at, or very close to, one end of this transmissible DNA segment and may play a role in mediating its transfer between strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-136-3-555
1990-03-01
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/136/3/mic-136-3-555.html?itemId=/content/journal/micro/10.1099/00221287-136-3-555&mimeType=html&fmt=ahah

References

  1. Allgaier H., Jung G., Werner R. G., Schneider U., Zahner H. 1986; Epidermin: sequencing of a heterodet tetracyclic 21-peptide amide antibiotic. European Journal of Biochemistry 160:9–22
    [Google Scholar]
  2. Banerjee S., Hansen J. N. 1988; Structure and expression of a gene encoding the precursor of subtilin, a small peptide antibiotic. Journal of Biological Chemistry 263:9508–9514
    [Google Scholar]
  3. Benkerroum N., Sandine W. E. 1988; Inhibitory action of nisin against Listeria monocytogenes. Journal of Dairy Science 71:3237–3245
    [Google Scholar]
  4. Berg D. E., Johnsrud L., Mcdivitt L., Ramabhadran R., Hirschel B. J. 1982; Inverted repeats of Tn5 are transposable elements. Proceedings of the National Academy of Sciences of the United States of America 79:2632–2635
    [Google Scholar]
  5. Berg D. E., Kazic T., Phadnis S. H., Dodson S. H., Lodge J. K. 1988; Mechanism and regulation of transposition. In Transposition pp. 107–129 Kingsman A. J., Chater K. F., Kingsman S. M. Edited by Cambridge: Cambridge University Press;
    [Google Scholar]
  6. Buchman W. B., Banerjee S., Hansen J. N. 1988; Structure, expression, and evolution of a gene encoding the precursor of nisin, a small protein antibiotic. Journal of Biological Chemistry 263:16260–16266
    [Google Scholar]
  7. Casadaban M. J., Cohen S. N. 1980; Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. Journal of Molecular Biology 138:179–207
    [Google Scholar]
  8. Clewell D. B., Gawron-Burke C. 1986; Conjugative transposons and the dissemination of antibiotic resistance in streptococci. Annual Review of Microbiology 40:635–659
    [Google Scholar]
  9. Cohen S. N., Chang A.C.Y., Hsu L. 1972; Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proceedings of the National Academy of Sciences of the United States of America 69:2110–2114
    [Google Scholar]
  10. Delecluse A., Bourgouin C., Klier A., Rapoport G. 1989; Nucleotide sequence and characterization of a new insertion element IS240 from Bacillus thuringiensis israelensis. Plasmid 21:71–78
    [Google Scholar]
  11. Fitzgerald G. F., Clewell D. B. 1985; A conjugative transposon (Tn979) in Streptococcus sanguis. Infection and Immunity 47:415–420
    [Google Scholar]
  12. Fitzgerald G. F., Gasson M. 1988; In vivo gene transfer systems and transposons. Biochimie 70:489–502
    [Google Scholar]
  13. Franke A. E., Clewell D. B. 1981; Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of ‘conjugal’ transfer in the absence of a conjugative plasmid. Journal of Bacteriology 145:494–502
    [Google Scholar]
  14. Fuchs P. G., Zajdel J., Dobrzanski W. T. 1975; Possible plasmid nature of the determinant for production of the antibiotic nisin in some strains of Streptococcus lactis. Journal of General Microbiology 88:189–192
    [Google Scholar]
  15. Gasson M. J. 1983; Plasmid components of Streptococcus lactisNCDO 712 and other lactic streptococci after protoplast-induced curing. Journal of Bacteriology 154:1–9
    [Google Scholar]
  16. Gasson M. J. 1984; Transfer of sucrose fermenting ability, nisin resistance and nisin production into Streptococcus lactis 712. FEMS Microbiology Letters 21:7–10
    [Google Scholar]
  17. Gasson M. J., Hill S. H., Anderson P. H. 1987; Molecular genetics of metabolic traits in lactic streptococci. In Streptococcal Genetics pp. 242–245 Ferretti J., Curtiss R. III Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  18. Gonzalez C. F., Kunka B. S. 1985; Transfer of sucrose fermenting ability and nisin production phenotype among lactic streptococci. Applied and Environmental Microbiology 49:627–633
    [Google Scholar]
  19. Graves M. C., Rabinowitz J. C. 1986; In vivoand in vitro transcription of the Clostridium pasteurianum ferredoxin gene. Journal of Biological Chemistry 261:13744–13753
    [Google Scholar]
  20. Gross E., Kiltz H. H. 1973; The number and nature of α,β-unsaturated amino acids in subtilin. Biochemical and Biophysical Research Communications 50:559–565
    [Google Scholar]
  21. Gross E., Morell J. 1971; The structure of nisin. Journal of the American Chemical Society 93:4634–4635
    [Google Scholar]
  22. Heffron F. 1983; Tn3 and its relatives. In Mobile Genetic Elements pp. 223–260 Shapiro J. A. Edited by New York: Academic Press;
    [Google Scholar]
  23. Humphreys G. O., Weston A., Brown M.G.M., Saunders J. T. 1979 In Transformation-1978 pp. 254–279 Glover S. W., Butler L. O. Edited by Oxford: Cotswold Press;
    [Google Scholar]
  24. Hurst A. 1981; Nisin. Advances in Applied Microbiology 27:85–123
    [Google Scholar]
  25. Iida S., Meyer J., Arber W. 1983; Prokaryotic IS elements. In Mobile Genetic Elements pp. 159–221 Shapiro J. A. Edited by New York: Academic Press;
    [Google Scholar]
  26. Ingram A. 1970; A ribosomal mechanism for synthesis of peptides related to nisin. Biochimica et Biophysica Acta 224:263–265
    [Google Scholar]
  27. Kaletta C., Entian K.-D. 1989; Nisin, a peptide antibiotic: cloning and sequencing of the nisA gene and post-translational processing of its peptide product. Journal of Bacteriology 171:1597–1601
    [Google Scholar]
  28. Kellner R., Jung G., Horner T., Zahner H., Schnell N., Entian K.-D., Gotz F. 1988; Gallidermin, a new lanthionine containing polypeptide antibiotic. European Journal of Biochemistry 177:53–59
    [Google Scholar]
  29. Klaenhammer T. R. 1988; Bacteriocins of lactic acid bacteria. Biochimie 70:337–349
    [Google Scholar]
  30. Kleckner N. 1983; Transposon Tn10. In Mobile Genetic Elements pp. 261–298 Shapiro J. A. Edited by New York: Academic Press;
    [Google Scholar]
  31. Kozak W., Rajchert-Trzpil M., Dobrzanski W. T. 1974; The effect of proflavin, ethidium bromide and an elevated temperature on the appearance of nisin-negative clones in nisin-producing strains of Steptococcuslactis. Journal of General Microbiology 83:295–302
    [Google Scholar]
  32. Leblanc D. J., Crow V. L., Lee L. N. 1980; Plasmid mediated carbohydrate catabolic enzymes among strains of Streptococcus lactis. In Plasmids and Transposons: Environmental Effects and Maintenance Mechanisms pp. 31–41 Stuttard C., Rozee K. R. Edited by New York: Academic Press;
    [Google Scholar]
  33. Lederberg E. M. 1987; Plasmid reference center registry of transposon (Tn) and insertion sequence (IS) allocations through December, 1986. Gene 51:115–118
    [Google Scholar]
  34. Lennox E. S. 1955; Transduction of linked genetic characters of the host bacteriophage PI. Virology 1:190–206
    [Google Scholar]
  35. Lewington J., Greenaway S. D., Spillane B. J. 1987; Rapid small scale preparation of bacterial genome DNA suitable for cloning and hybridization analysis. Letters in Applied Microbiology 5:51–53
    [Google Scholar]
  36. Ludwig W., Seewaldt E., Kilpper-Balz R., Schleifer K. H., Magrum L., Woese C. R., Fox G. E., Stackebrandt E. 1985; The phylogenic position of Streptococcus and Enterococcus. Journal of General Microbiology 131:543–551
    [Google Scholar]
  37. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  38. Matsutani S., Ohtsubo H., Maeda Y., Ohtsubo E. 1987; Isolation and characterization of IS elements repeated in the bacterial chromosome. Journal of Molecular Biology 196:445–455
    [Google Scholar]
  39. Mckay L. L., Baldwin K. A., Zottola E. A. 1972; Loss of lactose metabolism in lactic streptococci. Applied and Environmental Microbiology 23:1090–1096
    [Google Scholar]
  40. Perkins J. B., Youngman P. J. 1984; A physical and functional analysis of Tn977, a Streptococcus transposon in the Tn3 family that functions in Bacillus. Plasmid 12:119–138
    [Google Scholar]
  41. Polzin K. M., Shimizu-Kadota M. 1987; Indentification of a new insertion element, similar to gram-negative IS26, on the lactose plasmid of Streptococcus lactis ML3. Journal of Bacteriology 169:5481–5488
    [Google Scholar]
  42. Rosenberg M., Court D. 1979; Regulatory sequences involved in the promotion and termination of RN A transcription. Annual Review of Genetics 13:319–353
    [Google Scholar]
  43. Saedler H., Reif H. J., Hu S., Davidson N. 1974; IS2, a genetic element for turn-off and tum-on of gene activity in E. coli. Molecular and General Genetics 132:265–289
    [Google Scholar]
  44. Sanger F., Coulson A. R., Barrell B. G., Smith A.J.H., Roe B. A. 1980; Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. Journal of Molecular Biology 143:161–178
    [Google Scholar]
  45. Schnell N., Entian K.-D., Schneider U., Gotz F., Zahner H., Kellner R., Jung G. 1988; Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide rings. Nature; London: 333276–278
    [Google Scholar]
  46. Schnell N., Entian K.-D., Gotz F., Horner T., Kellner R., Jung G. 1989; Structural gene isolation and prepeptide sequence of gallidermin, a new lanthionine containing antibiotic. FEMS Microbiology Letters 58:263–268
    [Google Scholar]
  47. Senghas E., Jones J. M., Yamamoto M., Gawron-Burke C., Clewell D. B. 1988; Genetic organization of the bacterial conjugative transposon Tn916. Journal of Bacteriology 170:245–249
    [Google Scholar]
  48. Shearman C. A., Underwood H., Jury K., Gasson M. 1989; Cloning and DNA sequence analysis of a Lactococcus bacteriophage lysin gene. Molecular and General Genetics 218:214–221
    [Google Scholar]
  49. Steele J. L., Mckay L. L. 1986; Partial characterization of the genetic basis for sucrose metabolism and nisin production in Streptococcus lactis. Applied and Environmental Microbiology 51:57–64
    [Google Scholar]
  50. Taylor S. M., Somers E. B. 1985; Evaluation of the antibotulinal effectiveness of nisin in bacon. Journal of Food Protection 48:949–952
    [Google Scholar]
  51. Terzaghi B. E., Sandine W. E. 1975; Improved medium for lactic streptococci and their bacteriophages. Applied Microbiology 29:807–813
    [Google Scholar]
  52. Timmerman K. P., Tu C.-P.D. 1985; Complete sequence of IS3. Nucleic Acids Research 13:2127–2139
    [Google Scholar]
  53. Tramer J., Fowler G. G. 1964; Estimation of nrsiiv in foods. Journal of the Science of Food and Agriculture 15:522–528
    [Google Scholar]
  54. Tsai H.-J., Sandine W. E. 1987; Conjugal transfer of nisin plasmid genes from Streptococcus lactis 7962 to Leuconostoc dextranicum 181. Applied and Environmental Microbiology 53:352–357
    [Google Scholar]
  55. Yoshioka Y., Ohtsubo H., Ohtsubo E. 1987; Repressor gene finO in plasmids R100 and F: constitutive transfer of plasmid F is caused by insertion of IS3 into F finO. Journal of Bacteriology 169:619–623
    [Google Scholar]
  56. Zafarullah M., Charlier D., Glansdorff N. 1981; Insertion of IS3 can ‘turn-on’ a silent gene in Escherichia coli. Journal of Bacteriology 146:415–417
    [Google Scholar]
/content/journal/micro/10.1099/00221287-136-3-555
Loading
/content/journal/micro/10.1099/00221287-136-3-555
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error