SUMMARY: Previous studies of documented the importance of several pyridine nucleotide-dependent enzymes in processing extracellular NAD and NMN to satisfy the V-factor growth requirement of the organism. The substrate specificities of two of these enzymes, NMN: ATP adenylyltransferase and NAD kinase, were investigated following partial purification. The ability of the transferase to utilize 3-acetylpyridine mononucleotide and 3-aminopyridine mononucleotide as substrates for the synthesis of the corresponding dinucleotides was demonstrated. The NAD kinase was observed to accept 3-acetylpyridine adenine dinucleotide as a substrate but failed to utilize 3-aminopyridine adenine dinucleotide. The mononucleotides of 3-acetylpyridine and 3-aminopyridine were shown to be as effective as the corresponding dinucleotides in the support of growth and inhibition of growth of , respectively. Inhibition of growth of by submicromolar 3-aminopyridine adenine dinucleotide was shown to occur because 3-aminopyridine mononucleotide was produced from it in reactions catalysed by the periplasmic nucleotide pyrophosphatase. The presence of an additional important pyridine nucleotide-dependent enzyme, NMN glycohydrolase, is also reported.


Article metrics loading...

Loading full text...

Full text loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error