1887

Abstract

The physiology of CBS 8066 was studied in anaerobic glucose-limited chemostat cultures in a mineral medium supplemented with ergosterol and Tween 80. The organism had a of 0·31 h and a for glucose of 0·55 m. At a dilution rate of 0·10 h, a maximal yield of 0·10 g biomass (g glucose) was observed. The yield steadily declined with increasing dilution rates, so a maintenance coefficient for anaerobic growth could not be estimated At a dilution rate of 0·10 h, the yield of the strain H1022 was considerably higher than for CBS 8066, despite a similar cell composition. The major difference between the two yeast strains was that H1022 did not produce acetate, suggesting that the observed difference in cell yield may be ascribed to an uncoupling effect of acetic acid. The absence of acetate formation in H1022 correlated with a relatively high level of acetyl-CoA synthetase. The uncoupling effect of weak acids on anaerobic growth was confirmed in experiments in which a weak acid (acetate or propionate) was added to the medium feed. This resulted in a reduction in yield and an increase in specific ethanol production. Both yeasts required approximately 35 mg oleic acid (g biomass) for optimal growth. Lower or higher concentrations of this fatty acid, supplied as Tween 80, resulted in uncoupling of dissimilatory and assimilatory processes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-136-3-395
1990-03-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/136/3/mic-136-3-395.html?itemId=/content/journal/micro/10.1099/00221287-136-3-395&mimeType=html&fmt=ahah

References

  1. Aiking H., Tempest D. W. 1976; Growth and physiology of Candida utilis NCYC 321 in potassium-limited chemostat culture. Archives of Microbiology 108:117–124
    [Google Scholar]
  2. Andreasen A. A., Stier T.J.B. 1953; Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium. Journal of Cellular and Comparative Physiology 41:23–26
    [Google Scholar]
  3. Andreasen A. A., Stier T.J.B. 1954; Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium. Journal of Cellular and Comparative Physiology 43:271–281
    [Google Scholar]
  4. Barford J. P., Hall R. J. 1979a; An examination of the Crabtree effect in Saccharomyces cerevisiae: the role of respiratory adaptation. Journal of General Microbiology 114:267–275
    [Google Scholar]
  5. Barford J. P., Hall R. J. 1979b; Investigation of the significance of a carbon and redox balance to the measurement of gaseous metabolism of Saccharomyces cerevisiae. Biotechnology and Bioengineering 21:609–626
    [Google Scholar]
  6. Barford J. P., Jeffery P. M., Hall R. J. 1981; The Crabtree effect in Saccharomyces cerevisiae -primary control mechanism or transient?. In Advances in Biotechnology 1 pp 255–260 Moo-Young M., Robinson C. W., Vezina C. Edited by Toronto: Pergamon Press;
    [Google Scholar]
  7. Bruinenberg P. M., Van Dijken J. P., Scheffers W. A. 1983a; An enzymic analysis of NADPH production and consumption in Candida utilis CBS 621. Journal of General Microbiology 129:965–971
    [Google Scholar]
  8. Bruinenberg P. M., Van Dijken J. P., Scheffers W. A. 1983b; A theoretical analysis of NADPH production and consumption in yeasts. Journal of General Microbiology 129:953–964
    [Google Scholar]
  9. Bulder C.J.E.A., Reinink M. 1974; Unsaturated fatty acid composition of wild type and respiratory deficient yeasts after aerobic and anaerobic growth. Antonie van Leewenhoek 40:445–455
    [Google Scholar]
  10. Cássio F., Leão C., Van Uden N. 1987; Transport of lactate and other short-chain monocarboxylates in the yeast Saccharomyces cerevisiae. Applied and Environmental Microbiology 53:509–513
    [Google Scholar]
  11. Chantrenne H. 1955; Peroxydases induites par l’oxygène chez la levure. Biochimica et Biophysica Acta 18:58–62
    [Google Scholar]
  12. Van Dijken J. P., Scheffers W. A. 1986; Redox balances in the metabolism of sugars by yeasts. FEMS Microbiology Reviews 32:199–224
    [Google Scholar]
  13. Fiechter A., Fuhrmann G. F., Käppeli O. 1981; Regulation of glucose metabolism in growing yeast cells. Advances in Microbial Physiology 22:123–183
    [Google Scholar]
  14. Furukawa K., Heinzle E., Dunn I. J. 1983; Influence of oxygen on the growth of Saccharomyces cerevisiae in continuous culture. Biotechnology and Bioengineering 25:2293–2317
    [Google Scholar]
  15. Gancedo C., Gancedo J. M., Sols A. 1968; Glycerol metabolism in yeasts.Pathways of utilization and production. European Journal of Biochemistry 5:165–172
    [Google Scholar]
  16. Gordon P. A., Stewart P. R. 1972; Effect of lipid status on cytoplasmic and mitochondrial protein synthesis in anaerobic cultures of Saccharomyces cerevisiae. Journal of General Microbiology 72:231–242
    [Google Scholar]
  17. Holzer H., Bernhardt W., Schneider S. 1963; Zur Glycerinbildung in Backerhefe. Biochemische Zeitschrift 336:495–509
    [Google Scholar]
  18. Jones R. P., Greenfield P. F. 1987; Ethanol and the fluidity of the yeast plasma membrane. Yeast 3:223–232
    [Google Scholar]
  19. Kates M. 1966; Biosynthesis of lipids in microorganisms. Annual Review of Microbiology 20:13–44
    [Google Scholar]
  20. Kováč L., Šubík J., Russ G., Kollár K. 1967; On the relationship between respiratory activity and lipid composition of the yeast cell. Biochimica et Biophysica Acta 144:94–101
    [Google Scholar]
  21. Lee A. G. 1976; Interaction between anesthetics and lipid mixtures.Normal alcohols. Biochemistry 15:2448–2454
    [Google Scholar]
  22. Lee F.-J., Hassan H. M. 1986; Biosynthesis of superoxide dismutase and catalase in Saccharomyces cerevisiae: effects of oxygen and cytochrome c deficiency. Journal of Industrial Microbiology 1:187–193
    [Google Scholar]
  23. Macy J. M., Miller M. W. 1983; Anaerobic growth of Saccharomyces cerevisiae in the absence of oleic acid and ergosterol?. Archives of Microbiology 134:64–67
    [Google Scholar]
  24. Maiorella B. L., Blanch H. W., Wilke C. R. 1984; Feed component inhibition in ethanolic fermentation by Saccharomyces cerevisiae. Biotechnology and Bioengineering 26:1155–1166
    [Google Scholar]
  25. Munoz E., Ingledew W. M. 1989; Effect of yeast hulls on stuck and sluggish wine fermentations: importance of the lipid component. Applied and Environmental Microbiology 55:1560–1564
    [Google Scholar]
  26. Navon G., Shulman R. G., Yamane T., Eccleshall T. R., Lam K.-B., Baranofsky J. J., Marmur J. 1979; Phosphorus-31 nuclear magnetic resonance studies of wild-type and glycolytic pathway mutants of Saccharomyces cerevisiae. Biochemistry 18:4487–4499
    [Google Scholar]
  27. Neijssel O. M., Tempest D. W. 1976a; Bioenergetic aspects of aerobic growth of Klebsiellaaerogenes NCTC 418 in carbon-limited and carbon-sufficient chemostat culture. Archives of Microbiology 107:215–221
    [Google Scholar]
  28. Neijssel O. M., Tempest D. W. 1976b; The role of energy-spilling reactions in the growth of Klebsiella aerogenes NCTC 418 in aerobic chemostat culture. Archives of Microbiology 110:305–311
    [Google Scholar]
  29. Nicolay K., Scheffers W. A., Bruinenberg P. M., Kaptein R. 1982; Phosphorus-31 nuclear magnetic resonance studies of intracellular pH, phosphate compartmentation and phosphate transport in yeasts. Archives of Microbiology 133:83–89
    [Google Scholar]
  30. Oura E. 1972 The effect of aeration on the growth energetics and biochemical composition of baker’s yeast. PhD thesis, University of Helsinki, Finland
    [Google Scholar]
  31. Oura E. 1977; Reaction products of yeast fermentations. Process Biochemistry 12 (3):19–21 35
    [Google Scholar]
  32. Pampulha M. E., Loureiro V. 1989; Interaction of the effects of acetic acid and ethanol on inhibition of fermentation in Saccharomyces cerevisiae. Biotechnology Letters 11:269–274
    [Google Scholar]
  33. Petrik M., Käppeli O., Fiechter A. 1983; An expanded concept for the glucose effect in the yeast Saccharomyces uvarum: involvement of short-and long-term regulation. Journal of General Microbiology 129:43–49
    [Google Scholar]
  34. Postma E., Verduyn C., Scheffers W. A., Van Dijken J. P. 1989a; Enzymic analysis of the Crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Applied and Environmental Microbiology 55:468–477
    [Google Scholar]
  35. Postma E., Scheffers W. A., Van Dijken J. P. 1989b; Kinetics of growth and glucose transport in glucose-limited chemostat cultures of Saccharomyces cerevisiae CBS 8066. Yeast 5:159–165
    [Google Scholar]
  36. Rieger M., Käpelli O., Fiechter A. 1983; The role of limited respiration in the incomplete oxidation of glucose by Saccharomyces cerevisiae. Journal of General Microbiology 129:653–661
    [Google Scholar]
  37. Schatzmann H. 1975 Anaerobes Wachstum von Saccharomyces cerevisiae. PhD thesis, Eidgenössische Technische Hochschule Zürich, Switzerland
    [Google Scholar]
  38. Stein W. D. 1981; Permeability for lipophilic molecules. In Membrane Transport, pp 1–28 Bonting S. L., De Pont J. J. H. H. M. Edited by Amsterdam: Elsevier;
    [Google Scholar]
  39. Valle E., Bergillos L., Gascón S., Parra F., Ramos S. 1986; Trehalase activation in yeasts is mediated by an internal acidification. European Journal of Biochemistry 154:247–251
    [Google Scholar]
  40. Van Urk H., Mak P. R., Scheffers W. A., Van Dijken J. P. 1988; Metabolic responses of Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 upon transition from glucose limitation to glucose excess. Yeast 4:283–291
    [Google Scholar]
  41. Van Urk H., Schipper D., Breedveld G. J., Mak P. R., Scheffers W. A., Van Dijken J. P. 1989; Localization and kinetics of pyruvate-metabolizing enzymes in relation to aerobic alcoholic fermentation in Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621. Biochimica et Biophysica Acta 992:78–86
    [Google Scholar]
  42. Verduyn C., Van Dijken J. P., Scheffers W. A. 1984a; Colorimetric alcohol assays with alcohol oxidase. Journal of Microbiological Methods 2:15–25
    [Google Scholar]
  43. Verduyn C., Zomerdijk T.P.L., Van Dijken J. P., Scheffers W. A. 1984b; Continuous measurement of ethanol production by aerobic yeast suspensions with an enzyme electrode. Applied Microbiology and Biotechnology 19:181–185
    [Google Scholar]
  44. Verduyn C., Giuseppin M. L., Scheffers W. A., Vandijken J. P. 1988; Hydrogen peroxide metabolism in yeasts. Applied and Environmental Microbiology 54:2086–2090
    [Google Scholar]
  45. Verduyn C., Postma E., Scheffers W. A., Van Dijken J. P. 1990; Energetics of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. Journal of General Microbiology 136:405–412
    [Google Scholar]
  46. Viegas C. A., Rosa M. F., Sá-Correia I., Novais J. M. 1989; Inhibition of yeast growth by octanoic and decanoic acids produced during ethanolic fermentation. Applied and Environmental Microbiology 55:21–28
    [Google Scholar]
  47. Warth A. D. 1988; Effect of benzoic acid on growth yield of yeasts differing in their resistance to preservatives. Applied and Environmental Microbiology 54:2091–2095
    [Google Scholar]
  48. Warth A. D. 1989; Transport of benzoic and propanoic acids by Zygosaccharomyces bailii. Journal of General Microbiology 135:1383–1390
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-136-3-395
Loading
/content/journal/micro/10.1099/00221287-136-3-395
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error